in src/autotrain/cli/utils.py [0:0]
def common_args():
args = [
{
"arg": "--train",
"help": "Command to train the model",
"required": False,
"action": "store_true",
},
{
"arg": "--deploy",
"help": "Command to deploy the model (limited availability)",
"required": False,
"action": "store_true",
},
{
"arg": "--inference",
"help": "Command to run inference (limited availability)",
"required": False,
"action": "store_true",
},
{
"arg": "--username",
"help": "Hugging Face Hub Username",
"required": False,
"type": str,
},
{
"arg": "--backend",
"help": "Backend to use: default or spaces. Spaces backend requires push_to_hub & username. Advanced users only.",
"required": False,
"type": str,
"default": "local",
"choices": AVAILABLE_HARDWARE.keys(),
},
{
"arg": "--token",
"help": "Your Hugging Face API token. Token must have write access to the model hub.",
"required": False,
"type": str,
},
{
"arg": "--push-to-hub",
"help": "Push to hub after training will push the trained model to the Hugging Face model hub.",
"required": False,
"action": "store_true",
},
{
"arg": "--model",
"help": "Base model to use for training",
"required": True,
"type": str,
},
{
"arg": "--project-name",
"help": "Output directory / repo id for trained model (must be unique on hub)",
"required": True,
"type": str,
},
{
"arg": "--data-path",
"help": "Train dataset to use. When using cli, this should be a directory path containing training and validation data in appropriate formats",
"required": False,
"type": str,
},
{
"arg": "--train-split",
"help": "Train dataset split to use",
"required": False,
"type": str,
"default": "train",
},
{
"arg": "--valid-split",
"help": "Validation dataset split to use",
"required": False,
"type": str,
"default": None,
},
{
"arg": "--batch-size",
"help": "Training batch size to use",
"required": False,
"type": int,
"default": 2,
"alias": ["--train-batch-size"],
},
{
"arg": "--seed",
"help": "Random seed for reproducibility",
"required": False,
"default": 42,
"type": int,
},
{
"arg": "--epochs",
"help": "Number of training epochs",
"required": False,
"default": 1,
"type": int,
},
{
"arg": "--gradient-accumulation",
"help": "Gradient accumulation steps",
"required": False,
"default": 1,
"type": int,
"alias": ["--gradient-accumulation"],
},
{
"arg": "--disable-gradient-checkpointing",
"help": "Disable gradient checkpointing",
"required": False,
"action": "store_true",
"alias": ["--disable-gradient-checkpointing", "--disable-gc"],
},
{
"arg": "--lr",
"help": "Learning rate",
"required": False,
"default": 5e-4,
"type": float,
},
{
"arg": "--log",
"help": "Use experiment tracking",
"required": False,
"type": str,
"default": "none",
"choices": ["none", "wandb", "tensorboard"],
},
]
return args