def train()

in src/autotrain/trainers/text_classification/__main__.py [0:0]


def train(config):
    if isinstance(config, dict):
        config = TextClassificationParams(**config)

    train_data = None
    valid_data = None
    # check if config.train_split.csv exists in config.data_path
    if config.train_split is not None:
        if config.data_path == f"{config.project_name}/autotrain-data":
            logger.info("loading dataset from disk")
            train_data = load_from_disk(config.data_path)[config.train_split]
        else:
            if ":" in config.train_split:
                dataset_config_name, split = config.train_split.split(":")
                train_data = load_dataset(
                    config.data_path,
                    name=dataset_config_name,
                    split=split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )
            else:
                train_data = load_dataset(
                    config.data_path,
                    split=config.train_split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )

    if config.valid_split is not None:
        if config.data_path == f"{config.project_name}/autotrain-data":
            logger.info("loading dataset from disk")
            valid_data = load_from_disk(config.data_path)[config.valid_split]
        else:
            if ":" in config.valid_split:
                dataset_config_name, split = config.valid_split.split(":")
                valid_data = load_dataset(
                    config.data_path,
                    name=dataset_config_name,
                    split=split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )
            else:
                valid_data = load_dataset(
                    config.data_path,
                    split=config.valid_split,
                    token=config.token,
                    trust_remote_code=ALLOW_REMOTE_CODE,
                )

    classes = train_data.features[config.target_column].names
    label2id = {c: i for i, c in enumerate(classes)}
    num_classes = len(classes)

    if num_classes < 2:
        raise ValueError("Invalid number of classes. Must be greater than 1.")

    if config.valid_split is not None:
        num_classes_valid = len(valid_data.unique(config.target_column))
        if num_classes_valid != num_classes:
            raise ValueError(
                f"Number of classes in train and valid are not the same. Training has {num_classes} and valid has {num_classes_valid}"
            )

    model_config = AutoConfig.from_pretrained(config.model, num_labels=num_classes)
    model_config._num_labels = len(label2id)
    model_config.label2id = label2id
    model_config.id2label = {v: k for k, v in label2id.items()}

    try:
        model = AutoModelForSequenceClassification.from_pretrained(
            config.model,
            config=model_config,
            trust_remote_code=ALLOW_REMOTE_CODE,
            token=config.token,
            ignore_mismatched_sizes=True,
        )
    except OSError:
        model = AutoModelForSequenceClassification.from_pretrained(
            config.model,
            config=model_config,
            from_tf=True,
            trust_remote_code=ALLOW_REMOTE_CODE,
            token=config.token,
            ignore_mismatched_sizes=True,
        )

    tokenizer = AutoTokenizer.from_pretrained(config.model, token=config.token, trust_remote_code=ALLOW_REMOTE_CODE)
    train_data = TextClassificationDataset(data=train_data, tokenizer=tokenizer, config=config)
    if config.valid_split is not None:
        valid_data = TextClassificationDataset(data=valid_data, tokenizer=tokenizer, config=config)

    if config.logging_steps == -1:
        if config.valid_split is not None:
            logging_steps = int(0.2 * len(valid_data) / config.batch_size)
        else:
            logging_steps = int(0.2 * len(train_data) / config.batch_size)
        if logging_steps == 0:
            logging_steps = 1
        if logging_steps > 25:
            logging_steps = 25
        config.logging_steps = logging_steps
    else:
        logging_steps = config.logging_steps

    logger.info(f"Logging steps: {logging_steps}")

    training_args = dict(
        output_dir=config.project_name,
        per_device_train_batch_size=config.batch_size,
        per_device_eval_batch_size=2 * config.batch_size,
        learning_rate=config.lr,
        num_train_epochs=config.epochs,
        eval_strategy=config.eval_strategy if config.valid_split is not None else "no",
        logging_steps=logging_steps,
        save_total_limit=config.save_total_limit,
        save_strategy=config.eval_strategy if config.valid_split is not None else "no",
        gradient_accumulation_steps=config.gradient_accumulation,
        report_to=config.log,
        auto_find_batch_size=config.auto_find_batch_size,
        lr_scheduler_type=config.scheduler,
        optim=config.optimizer,
        warmup_ratio=config.warmup_ratio,
        weight_decay=config.weight_decay,
        max_grad_norm=config.max_grad_norm,
        push_to_hub=False,
        load_best_model_at_end=True if config.valid_split is not None else False,
        ddp_find_unused_parameters=False,
    )

    if config.mixed_precision == "fp16":
        training_args["fp16"] = True
    if config.mixed_precision == "bf16":
        training_args["bf16"] = True

    if config.valid_split is not None:
        early_stop = EarlyStoppingCallback(
            early_stopping_patience=config.early_stopping_patience,
            early_stopping_threshold=config.early_stopping_threshold,
        )
        callbacks_to_use = [early_stop]
    else:
        callbacks_to_use = []

    callbacks_to_use.extend([UploadLogs(config=config), LossLoggingCallback(), TrainStartCallback()])

    args = TrainingArguments(**training_args)
    trainer_args = dict(
        args=args,
        model=model,
        callbacks=callbacks_to_use,
        compute_metrics=(
            utils._binary_classification_metrics if num_classes == 2 else utils._multi_class_classification_metrics
        ),
    )

    trainer = Trainer(
        **trainer_args,
        train_dataset=train_data,
        eval_dataset=valid_data,
    )
    trainer.remove_callback(PrinterCallback)
    trainer.train()

    logger.info("Finished training, saving model...")
    trainer.save_model(config.project_name)
    tokenizer.save_pretrained(config.project_name)

    model_card = utils.create_model_card(config, trainer, num_classes)

    # save model card to output directory as README.md
    with open(f"{config.project_name}/README.md", "w") as f:
        f.write(model_card)

    if config.push_to_hub:
        if PartialState().process_index == 0:
            remove_autotrain_data(config)
            save_training_params(config)
            logger.info("Pushing model to hub...")
            api = HfApi(token=config.token)
            api.create_repo(
                repo_id=f"{config.username}/{config.project_name}", repo_type="model", private=True, exist_ok=True
            )
            api.upload_folder(
                folder_path=config.project_name,
                repo_id=f"{config.username}/{config.project_name}",
                repo_type="model",
            )

    if PartialState().process_index == 0:
        pause_space(config)