in src/autotrain/trainers/object_detection/utils.py [0:0]
def object_detection_metrics(evaluation_results, image_processor, threshold=0.0, id2label=None):
"""
Compute mean average mAP, mAR and their variants for the object detection task.
Args:
evaluation_results (EvalPrediction): Predictions and targets from evaluation.
threshold (float, optional): Threshold to filter predicted boxes by confidence. Defaults to 0.0.
id2label (Optional[dict], optional): Mapping from class id to class name. Defaults to None.
Returns:
Mapping[str, float]: Metrics in a form of dictionary {<metric_name>: <metric_value>}
"""
@dataclass
class ModelOutput:
logits: torch.Tensor
pred_boxes: torch.Tensor
predictions, targets = evaluation_results.predictions, evaluation_results.label_ids
# For metric computation we need to provide:
# - targets in a form of list of dictionaries with keys "boxes", "labels"
# - predictions in a form of list of dictionaries with keys "boxes", "scores", "labels"
image_sizes = []
post_processed_targets = []
post_processed_predictions = []
# Collect targets in the required format for metric computation
for batch in targets:
# collect image sizes, we will need them for predictions post processing
batch_image_sizes = torch.tensor([x["orig_size"] for x in batch])
image_sizes.append(batch_image_sizes)
# collect targets in the required format for metric computation
# boxes were converted to YOLO format needed for model training
# here we will convert them to Pascal VOC format (x_min, y_min, x_max, y_max)
for image_target in batch:
boxes = torch.tensor(image_target["boxes"])
boxes = convert_bbox_yolo_to_pascal(boxes, image_target["orig_size"])
labels = torch.tensor(image_target["class_labels"])
post_processed_targets.append({"boxes": boxes, "labels": labels})
# Collect predictions in the required format for metric computation,
# model produce boxes in YOLO format, then image_processor convert them to Pascal VOC format
for batch, target_sizes in zip(predictions, image_sizes):
batch_logits, batch_boxes = batch[1], batch[2]
output = ModelOutput(logits=torch.tensor(batch_logits), pred_boxes=torch.tensor(batch_boxes))
post_processed_output = image_processor.post_process_object_detection(
output, threshold=threshold, target_sizes=target_sizes
)
post_processed_predictions.extend(post_processed_output)
# Compute metrics
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
metric.update(post_processed_predictions, post_processed_targets)
metrics = metric.compute()
# Replace list of per class metrics with separate metric for each class
classes = metrics.pop("classes")
try:
len(classes)
calc_map_per_class = True
except TypeError:
calc_map_per_class = False
if calc_map_per_class:
map_per_class = metrics.pop("map_per_class")
mar_100_per_class = metrics.pop("mar_100_per_class")
for class_id, class_map, class_mar in zip(classes, map_per_class, mar_100_per_class):
class_name = id2label[class_id.item()] if id2label is not None else class_id.item()
metrics[f"map_{class_name}"] = class_map
metrics[f"mar_100_{class_name}"] = class_mar
metrics = {k: round(v.item(), 4) for k, v in metrics.items()}
return metrics