in src/autotrain/app/params.py [0:0]
def _munge_params_tabular(self):
_params = self._munge_common_params()
_params["model"] = self.base_model
if not self.using_hub_dataset:
_params["id_column"] = "autotrain_id"
_params["valid_split"] = "validation"
if len(self.column_mapping["label"]) == 1:
_params["target_columns"] = ["autotrain_label"]
else:
_params["target_columns"] = [
"autotrain_label_" + str(i) for i in range(len(self.column_mapping["label"]))
]
else:
_params["id_column"] = self.column_mapping.get("id" if not self.api else "id_column", "id")
_params["train_split"] = self.train_split
_params["valid_split"] = self.valid_split
_params["target_columns"] = self.column_mapping.get("label" if not self.api else "target_columns", "label")
if len(_params["categorical_imputer"].strip()) == 0 or _params["categorical_imputer"].lower() == "none":
_params["categorical_imputer"] = None
if len(_params["numerical_imputer"].strip()) == 0 or _params["numerical_imputer"].lower() == "none":
_params["numerical_imputer"] = None
if len(_params["numeric_scaler"].strip()) == 0 or _params["numeric_scaler"].lower() == "none":
_params["numeric_scaler"] = None
if "classification" in self.task:
_params["task"] = "classification"
else:
_params["task"] = "regression"
return TabularParams(**_params)