colabs/image_classification.ipynb (63 lines of code) (raw):

{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%writefile config.yml\n", "task: image_classification # do not change\n", "base_model: google/vit-base-patch16-224 # the model to be used from hugging face hub\n", "project_name: autotrain-image-classification-model # the name of the project, must be unique\n", "log: tensorboard # do not change\n", "backend: local # do not change\n", "\n", "data:\n", " path: data/ # the path to the data folder, this folder consists of `train` and `valid` (if any) folders\n", " train_split: train # this folder inside data/ will be used for training, it contains the images in subfolders.\n", " valid_split: null # this folder inside data/ will be used for validation, it contains the images in subfolders. If not available, set it to null\n", " column_mapping: # do not change\n", " image_column: image\n", " target_column: labels\n", "\n", "params:\n", " epochs: 2\n", " batch_size: 4\n", " lr: 2e-5\n", " optimizer: adamw_torch\n", " scheduler: linear\n", " gradient_accumulation: 1\n", " mixed_precision: fp16\n", "\n", "hub:\n", " username: ${HF_USERNAME} # please set HF_USERNAME in colab secrets\n", " token: ${HF_TOKEN} # please set HF_TOKEN in colab secrets, must be valid hugging face write token\n", " push_to_hub: true # set to true if you want to push the model to the hub" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "from google.colab import userdata\n", "HF_USERNAME = userdata.get('HF_USERNAME')\n", "HF_TOKEN = userdata.get('HF_TOKEN')\n", "os.environ['HF_USERNAME'] = HF_USERNAME\n", "\n", "os.environ['HF_TOKEN'] = HF_TOKEN\n", "!autotrain --config config.yml" ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 2 }