src/autotrain/trainers/seq2seq/params.py (42 lines of code) (raw):

from typing import Optional from pydantic import Field from autotrain.trainers.common import AutoTrainParams class Seq2SeqParams(AutoTrainParams): """ Seq2SeqParams is a configuration class for sequence-to-sequence training parameters. Attributes: data_path (str): Path to the dataset. model (str): Name of the model to be used. Default is "google/flan-t5-base". username (Optional[str]): Hugging Face Username. seed (int): Random seed for reproducibility. Default is 42. train_split (str): Name of the training data split. Default is "train". valid_split (Optional[str]): Name of the validation data split. project_name (str): Name of the project or output directory. Default is "project-name". token (Optional[str]): Hub Token for authentication. push_to_hub (bool): Whether to push the model to the Hugging Face Hub. Default is False. text_column (str): Name of the text column in the dataset. Default is "text". target_column (str): Name of the target text column in the dataset. Default is "target". lr (float): Learning rate for training. Default is 5e-5. epochs (int): Number of training epochs. Default is 3. max_seq_length (int): Maximum sequence length for input text. Default is 128. max_target_length (int): Maximum sequence length for target text. Default is 128. batch_size (int): Training batch size. Default is 2. warmup_ratio (float): Proportion of warmup steps. Default is 0.1. gradient_accumulation (int): Number of gradient accumulation steps. Default is 1. optimizer (str): Optimizer to be used. Default is "adamw_torch". scheduler (str): Learning rate scheduler to be used. Default is "linear". weight_decay (float): Weight decay for the optimizer. Default is 0.0. max_grad_norm (float): Maximum gradient norm for clipping. Default is 1.0. logging_steps (int): Number of steps between logging. Default is -1 (disabled). eval_strategy (str): Evaluation strategy. Default is "epoch". auto_find_batch_size (bool): Whether to automatically find the batch size. Default is False. mixed_precision (Optional[str]): Mixed precision training mode (fp16, bf16, or None). save_total_limit (int): Maximum number of checkpoints to save. Default is 1. peft (bool): Whether to use Parameter-Efficient Fine-Tuning (PEFT). Default is False. quantization (Optional[str]): Quantization mode (int4, int8, or None). Default is "int8". lora_r (int): LoRA-R parameter for PEFT. Default is 16. lora_alpha (int): LoRA-Alpha parameter for PEFT. Default is 32. lora_dropout (float): LoRA-Dropout parameter for PEFT. Default is 0.05. target_modules (str): Target modules for PEFT. Default is "all-linear". log (str): Logging method for experiment tracking. Default is "none". early_stopping_patience (int): Patience for early stopping. Default is 5. early_stopping_threshold (float): Threshold for early stopping. Default is 0.01. """ data_path: str = Field(None, title="Data path") model: str = Field("google/flan-t5-base", title="Model name") username: Optional[str] = Field(None, title="Hugging Face Username") seed: int = Field(42, title="Seed") train_split: str = Field("train", title="Train split") valid_split: Optional[str] = Field(None, title="Validation split") project_name: str = Field("project-name", title="Output directory") token: Optional[str] = Field(None, title="Hub Token") push_to_hub: bool = Field(False, title="Push to hub") text_column: str = Field("text", title="Text column") target_column: str = Field("target", title="Target text column") lr: float = Field(5e-5, title="Learning rate") epochs: int = Field(3, title="Number of training epochs") max_seq_length: int = Field(128, title="Max sequence length") max_target_length: int = Field(128, title="Max target sequence length") batch_size: int = Field(2, title="Training batch size") warmup_ratio: float = Field(0.1, title="Warmup proportion") gradient_accumulation: int = Field(1, title="Gradient accumulation steps") optimizer: str = Field("adamw_torch", title="Optimizer") scheduler: str = Field("linear", title="Scheduler") weight_decay: float = Field(0.0, title="Weight decay") max_grad_norm: float = Field(1.0, title="Max gradient norm") logging_steps: int = Field(-1, title="Logging steps") eval_strategy: str = Field("epoch", title="Evaluation strategy") auto_find_batch_size: bool = Field(False, title="Auto find batch size") mixed_precision: Optional[str] = Field(None, title="fp16, bf16, or None") save_total_limit: int = Field(1, title="Save total limit") token: Optional[str] = Field(None, title="Hub Token") push_to_hub: bool = Field(False, title="Push to hub") peft: bool = Field(False, title="Use PEFT") quantization: Optional[str] = Field("int8", title="int4, int8, or None") lora_r: int = Field(16, title="LoRA-R") lora_alpha: int = Field(32, title="LoRA-Alpha") lora_dropout: float = Field(0.05, title="LoRA-Dropout") target_modules: str = Field("all-linear", title="Target modules for PEFT") log: str = Field("none", title="Logging using experiment tracking") early_stopping_patience: int = Field(5, title="Early stopping patience") early_stopping_threshold: float = Field(0.01, title="Early stopping threshold")