in bench_cluster/communication/all_reduce.py [0:0]
def run_all_reduce(local_rank, trials, warmups, maxsize, async_op, bw_unit, scan, raw, dtype, mem_factor, debug=False):
# Prepare benchmark header
print_header(bw_unit, raw, 'all_reduce')
world_size = dist.get_world_size()
global_rank = dist.get_rank()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
if scan:
M_LIST = []
for x in (2**p for p in range(1, maxsize)):
M_LIST.append(x)
sync_all()
# loop over various tensor sizes
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size, M, dtype=getattr(torch, dtype)).cuda(local_rank)
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
del mat
torch.cuda.empty_cache()
except RuntimeError as e:
if 'out of memory' in str(e):
print_rank_0('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
break
else:
raise e
sync_all()
timed_all_reduce(input, start_event, end_event, warmups, trials, async_op, bw_unit, raw)
else:
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
# Don't need output tensor, so we double mem_factor
elements_per_gpu = max_numel('all_reduce', getattr(torch, dtype), mem_factor * 2, local_rank)
try:
mat = torch.ones(elements_per_gpu, dtype=getattr(torch, dtype)).cuda(local_rank)
input = ((mat.mul_(float(global_rank))).view(-1))
except RuntimeError as e:
if 'out of memory' in str(e):
print_rank_0('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
return
else:
raise e
sync_all()
timed_all_reduce(input, start_event, end_event, warmups, trials, async_op, bw_unit, raw)