in bench_cluster/communication/all_to_all.py [0:0]
def run_all_to_all(local_rank, trials, warmups, maxsize, async_op, bw_unit, scan, raw, dtype, mem_factor, debug=False):
world_size = dist.get_world_size()
global_rank = dist.get_rank()
# Prepare benchmark header
print_header(bw_unit, raw, 'all_to_all')
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
if scan:
M_LIST = []
for x in (2**p for p in range(1, maxsize)):
M_LIST.append(x)
sync_all()
# loop over various tensor sizes
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size, M, dtype=getattr(torch, dtype)).cuda(local_rank)
assert mat.numel() % world_size == 0, f"tensor cannot be divided in {world_size} chunks"
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
output = (mat.clone().view(-1))
except RuntimeError as e:
if 'out of memory' in str(e):
print_rank_0('WARNING: Ran out of GPU memory. Exiting comm op.')
sync_all()
break
else:
raise e
sync_all()
timed_all_to_all(input, output, start_event, end_event, warmups, trials, async_op, bw_unit, raw)
else:
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
elements_per_gpu = max_numel('all_to_all', getattr(torch, dtype), mem_factor, local_rank)
try:
mat = torch.ones(elements_per_gpu, dtype=getattr(torch, dtype)).cuda(local_rank)
assert mat.numel(
) % world_size == 0, f"tensor with {mat.numel()} elements cannot be divided in {world_size} chunks"
input = ((mat.mul_(float(global_rank))).view(-1))
# Delete original mat to avoid OOM
del mat
torch.cuda.empty_cache()
output = torch.zeros(elements_per_gpu, dtype=getattr(torch, dtype)).cuda(local_rank)
except RuntimeError as e:
if 'out of memory' in str(e):
print_rank_0('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
return
else:
raise e
sync_all()
if debug:
for i in range(world_size):
if i == global_rank:
print(f"Before AllToAll Input List at rank {global_rank}: {input}")
dist.barrier()
timed_all_to_all(input, output, start_event, end_event, warmups, trials, async_op, bw_unit, raw)
if debug:
for i in range(world_size):
if i == global_rank:
print(f"AllToAll Results at rank {global_rank}: {output}")
dist.barrier()