in bitsandbytes/functional.py [0:0]
def spmm_coo(cooA, B, out=None):
if out is None:
out = torch.empty((cooA.rows, B.shape[1]), device=B.device, dtype=B.dtype)
nnz = cooA.nnz
assert cooA.rowidx.numel() == nnz
assert cooA.colidx.numel() == nnz
assert cooA.values.numel() == nnz
assert cooA.cols == B.shape[0]
transposed_B = False if B.is_contiguous() else True
ldb = B.stride()[(1 if transposed_B else 0)]
ldc = B.shape[1]
ptr = Cusparse_Context.get_instance().context
ptrRowidx = get_ptr(cooA.rowidx)
ptrColidx = get_ptr(cooA.colidx)
ptrValues = get_ptr(cooA.values)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
cnnz = ct.c_int32(cooA.nnz)
crowsA = ct.c_int32(cooA.rows)
ccolsA = ct.c_int32(cooA.cols)
ccolsB = ct.c_int32(B.shape[1])
cldb = ct.c_int32(ldb)
cldc = ct.c_int32(ldc)
is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out])
lib.cspmm_coo(
ptr,
ptrRowidx,
ptrColidx,
ptrValues,
cnnz,
crowsA,
ccolsA,
ccolsB,
cldb,
ptrB,
cldc,
ptrC,
ct.c_bool(transposed_B),
)
return out