in bitsandbytes/functional.py [0:0]
def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
e = exponent_bits
p = precision_bits
has_sign = 1 if signed else 0
assert e + p == total_bits - has_sign
# the exponent is biased to 2^(e-1) -1 == 0
evalues = []
pvalues = []
for i, val in enumerate(range(-(2 ** (exponent_bits - has_sign)), 2 ** (exponent_bits - has_sign), 1)):
evalues.append(2**val)
values = []
lst = list(itertools.product([0, 1], repeat=precision_bits))
# for ev in evalues:
bias = 2 ** (exponent_bits - 1)
for evalue in range(2 ** (exponent_bits)):
for bit_pattern in lst:
value = 1 if evalue != 0 else 0
for i, pval in enumerate(list(bit_pattern)):
value += pval * (2 ** -(i + 1))
if evalue == 0:
# subnormals
value = value * 2**-(bias)
else:
# normals
value = value * 2 ** -(evalue - bias - 1)
values.append(value)
if signed:
values.append(-value)
assert len(values) == 2**total_bits
values.sort()
if total_bits < 8:
gap = 256 - len(values)
for i in range(gap):
values.append(0)
values.sort()
code = torch.Tensor(values)
code /= code.max()
return code