in bitsandbytes/nn/modules.py [0:0]
def _save_to_state_dict(self, destination, prefix, keep_vars):
super()._save_to_state_dict(destination, prefix, keep_vars)
# we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data
scb_name = "SCB"
# case 1: .cuda was called, SCB is in self.weight
param_from_weight = getattr(self.weight, scb_name)
# case 2: self.init_8bit_state was called, SCB is in self.state
param_from_state = getattr(self.state, scb_name)
# case 3: SCB is in self.state, weight layout reordered after first forward()
layout_reordered = self.state.CxB is not None
key_name = prefix + f"{scb_name}"
format_name = prefix + "weight_format"
if not self.state.has_fp16_weights:
if param_from_weight is not None:
destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach()
destination[format_name] = torch.tensor(0, dtype=torch.uint8)
elif param_from_state is not None and not layout_reordered:
destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
destination[format_name] = torch.tensor(0, dtype=torch.uint8)
elif param_from_state is not None:
destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
weights_format = self.state.formatB
# At this point `weights_format` is an str
if weights_format not in LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING:
raise ValueError(f"Unrecognized weights format {weights_format}")
weights_format = LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING[weights_format]
destination[format_name] = torch.tensor(weights_format, dtype=torch.uint8)