bitsandbytes/nn/modules.py (541 lines of code) (raw):

# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy from typing import Any, Dict, Optional, TypeVar, Union, overload import warnings import torch from torch import Tensor, device, dtype, nn import torch.nn.functional as F import bitsandbytes as bnb from bitsandbytes.autograd._functions import get_tile_inds, undo_layout from bitsandbytes.functional import QuantState from bitsandbytes.optim import GlobalOptimManager from bitsandbytes.utils import ( INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING, LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING, OutlierTracer, ) T = TypeVar("T", bound="torch.nn.Module") class StableEmbedding(torch.nn.Embedding): """ Custom embedding layer designed to improve stability during training for NLP tasks by using 32-bit optimizer states. It is designed to reduce gradient variations that can result from quantization. This embedding layer is initialized with Xavier uniform initialization followed by layer normalization. Example: ``` # Initialize StableEmbedding layer with vocabulary size 1000, embedding dimension 300 embedding_layer = StableEmbedding(num_embeddings=1000, embedding_dim=300) # Reset embedding parameters embedding_layer.reset_parameters() # Perform a forward pass with input tensor input_tensor = torch.tensor([1, 2, 3]) output_embedding = embedding_layer(input_tensor) ``` Attributes: norm (`torch.nn.LayerNorm`): Layer normalization applied after the embedding. Methods: reset_parameters(): Reset embedding parameters using Xavier uniform initialization. forward(input: Tensor) -> Tensor: Forward pass through the stable embedding layer. """ def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[Tensor] = None, device=None, dtype=None, ) -> None: """ Args: num_embeddings (`int`): The number of unique embeddings (vocabulary size). embedding_dim (`int`): The dimensionality of the embedding. padding_idx (`Optional[int]`): Pads the output with zeros at the given index. max_norm (`Optional[float]`): Renormalizes embeddings to have a maximum L2 norm. norm_type (`float`, defaults to `2.0`): The p-norm to compute for the `max_norm` option. scale_grad_by_freq (`bool`, defaults to `False`): Scale gradient by frequency during backpropagation. sparse (`bool`, defaults to `False`): Computes dense gradients. Set to `True` to compute sparse gradients instead. _weight (`Optional[Tensor]`): Pretrained embeddings. """ super().__init__( num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight, device, dtype, ) self.norm = torch.nn.LayerNorm(embedding_dim, device=device) GlobalOptimManager.get_instance().register_module_override(self, "weight", {"optim_bits": 32}) def reset_parameters(self) -> None: torch.nn.init.xavier_uniform_(self.weight) self._fill_padding_idx_with_zero() """ !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding to make the Layer compatible with Pytorch < 1.9. This means that if this changes in future PyTorch releases this need to change too which is cumbersome. However, with this we can ensure compatibility with previous PyTorch releases. """ def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input: Tensor) -> Tensor: emb = F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) # always apply layer norm in full precision emb = emb.to(torch.get_default_dtype()) return self.norm(emb).to(self.weight.dtype) class Embedding(torch.nn.Embedding): """ Embedding class to store and retrieve word embeddings from their indices. """ def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[Tensor] = None, device: Optional[device] = None, ) -> None: """ Args: num_embeddings (`int`): The number of unique embeddings (vocabulary size). embedding_dim (`int`): The dimensionality of the embedding. padding_idx (`Optional[int]`): Pads the output with zeros at the given index. max_norm (`Optional[float]`): Renormalizes embeddings to have a maximum L2 norm. norm_type (`float`, defaults to `2.0`): The p-norm to compute for the `max_norm` option. scale_grad_by_freq (`bool`, defaults to `False`): Scale gradient by frequency during backpropagation. sparse (`bool`, defaults to `False`): Computes dense gradients. Set to `True` to compute sparse gradients instead. _weight (`Optional[Tensor]`): Pretrained embeddings. """ super().__init__( num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight, device=device, ) GlobalOptimManager.get_instance().register_module_override(self, "weight", {"optim_bits": 32}) def reset_parameters(self) -> None: torch.nn.init.xavier_uniform_(self.weight) self._fill_padding_idx_with_zero() """ !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding to make the Layer compatible with Pytorch < 1.9. This means that if this changes in future PyTorch releases this need to change too which is cumbersome. However, with this we can ensure compatibility with previous PyTorch releases. """ def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input: Tensor) -> Tensor: emb = F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return emb class Params4bit(torch.nn.Parameter): def __new__( cls, data: Optional[torch.Tensor] = None, requires_grad=False, # quantized weights should be frozen by default quant_state: Optional[QuantState] = None, blocksize: int = 64, compress_statistics: bool = True, quant_type: str = "fp4", quant_storage: torch.dtype = torch.uint8, module: Optional["Linear4bit"] = None, bnb_quantized: bool = False, ) -> "Params4bit": if data is None: data = torch.empty(0) self = torch.Tensor._make_subclass(cls, data, requires_grad) self.blocksize = blocksize self.compress_statistics = compress_statistics self.quant_type = quant_type self.quant_state = quant_state self.quant_storage = quant_storage self.bnb_quantized = bnb_quantized self.data = data self.module = module return self def __getstate__(self): state = self.__dict__ state["data"] = self.data state["requires_grad"] = self.requires_grad return state def __setstate__(self, state): self.requires_grad = state["requires_grad"] self.blocksize = state["blocksize"] self.compress_statistics = state["compress_statistics"] self.quant_type = state["quant_type"] self.quant_state = state["quant_state"] self.data = state["data"] self.quant_storage = state["quant_storage"] self.bnb_quantized = state["bnb_quantized"] self.module = state["module"] def __deepcopy__(self, memo): new_instance = type(self).__new__(type(self)) state = self.__getstate__() new_instance.__setstate__(state) new_instance.quant_state = copy.deepcopy(state["quant_state"]) new_instance.data = copy.deepcopy(state["data"]) return new_instance def __copy__(self): new_instance = type(self).__new__(type(self)) state = self.__getstate__() new_instance.__setstate__(state) return new_instance @classmethod def from_prequantized( cls, data: torch.Tensor, quantized_stats: Dict[str, Any], requires_grad: bool = False, device="cuda", **kwargs, ) -> "Params4bit": self = torch.Tensor._make_subclass(cls, data.to(device)) self.requires_grad = requires_grad self.quant_state = QuantState.from_dict(qs_dict=quantized_stats, device=device) self.blocksize = self.quant_state.blocksize self.compress_statistics = self.quant_state.nested self.quant_type = self.quant_state.quant_type self.bnb_quantized = True return self def _quantize(self, device): w = self.data.contiguous().cuda(device) w_4bit, quant_state = bnb.functional.quantize_4bit( w, blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type, quant_storage=self.quant_storage, ) self.data = w_4bit self.quant_state = quant_state if self.module is not None: self.module.quant_state = quant_state self.bnb_quantized = True return self def cuda(self, device: Optional[Union[int, device, str]] = None, non_blocking: bool = False): return self.to(device="cuda" if device is None else device, non_blocking=non_blocking) @overload def to( self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ..., non_blocking: bool = ..., ) -> T: ... @overload def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T: ... @overload def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T: ... def to(self, *args, **kwargs): device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) if device is not None and device.type == "cuda" and not self.bnb_quantized: return self._quantize(device) else: if self.quant_state is not None: self.quant_state.to(device) new_param = Params4bit( super().to(device=device, dtype=dtype, non_blocking=non_blocking), requires_grad=self.requires_grad, quant_state=self.quant_state, blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type, ) return new_param class Linear4bit(nn.Linear): """ This class is the base module for the 4-bit quantization algorithm presented in [QLoRA](https://arxiv.org/abs/2305.14314). QLoRA 4-bit linear layers uses blockwise k-bit quantization under the hood, with the possibility of selecting various compute datatypes such as FP4 and NF4. In order to quantize a linear layer one should first load the original fp16 / bf16 weights into the Linear4bit module, then call `quantized_module.to("cuda")` to quantize the fp16 / bf16 weights. Example: ```python import torch import torch.nn as nn import bitsandbytes as bnb from bnb.nn import Linear4bit fp16_model = nn.Sequential( nn.Linear(64, 64), nn.Linear(64, 64) ) quantized_model = nn.Sequential( Linear4bit(64, 64), Linear4bit(64, 64) ) quantized_model.load_state_dict(fp16_model.state_dict()) quantized_model = quantized_model.to(0) # Quantization happens here ``` """ def __init__( self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True, quant_type="fp4", quant_storage=torch.uint8, device=None, ): """ Initialize Linear4bit class. Args: input_features (`str`): Number of input features of the linear layer. output_features (`str`): Number of output features of the linear layer. bias (`bool`, defaults to `True`): Whether the linear class uses the bias term as well. """ super().__init__(input_features, output_features, bias, device) self.weight = Params4bit( self.weight.data, requires_grad=False, compress_statistics=compress_statistics, quant_type=quant_type, quant_storage=quant_storage, module=self, ) # self.persistent_buffers = [] # TODO consider as way to save quant state self.compute_dtype = compute_dtype self.compute_type_is_set = False self.quant_state = None self.quant_storage = quant_storage def set_compute_type(self, x): if x.dtype in [torch.float32, torch.bfloat16]: # the input is in a dtype that is safe to compute in, we switch # to this type for speed and stability self.compute_dtype = x.dtype elif x.dtype == torch.float16: # we take the compoute dtype passed into the layer if self.compute_dtype == torch.float32 and (x.numel() == x.shape[-1]): # single batch inference with input torch.float16 and compute_dtype float32 -> slow inference when it could be fast # warn the user about this warnings.warn( "Input type into Linear4bit is torch.float16, but bnb_4bit_compute_dtype=torch.float32 (default). This will lead to slow inference.", ) warnings.filterwarnings("ignore", message=".*inference.") if self.compute_dtype == torch.float32 and (x.numel() != x.shape[-1]): warnings.warn( "Input type into Linear4bit is torch.float16, but bnb_4bit_compute_dtype=torch.float32 (default). This will lead to slow inference or training speed.", ) warnings.filterwarnings("ignore", message=".*inference or training") def _save_to_state_dict(self, destination, prefix, keep_vars): """ save weight and bias, then fill state_dict with components of quant_state """ super()._save_to_state_dict(destination, prefix, keep_vars) # saving weight and bias if getattr(self.weight, "quant_state", None) is not None: for k, v in self.weight.quant_state.as_dict(packed=True).items(): destination[prefix + "weight." + k] = v if keep_vars else v.detach() def forward(self, x: torch.Tensor): # weights are cast automatically as Int8Params, but the bias has to be cast manually if self.bias is not None and self.bias.dtype != x.dtype: self.bias.data = self.bias.data.to(x.dtype) if getattr(self.weight, "quant_state", None) is None: if getattr(self, "quant_state", None) is not None: # the quant state got lost when the parameter got converted. This happens for example for fsdp # since we registered the module, we can recover the state here assert self.weight.shape[1] == 1 if not isinstance(self.weight, Params4bit): self.weight = Params4bit(self.weight, quant_storage=self.quant_storage) self.weight.quant_state = self.quant_state else: print( "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first.", ) if not self.compute_type_is_set: self.set_compute_type(x) self.compute_type_is_set = True inp_dtype = x.dtype if self.compute_dtype is not None: x = x.to(self.compute_dtype) bias = None if self.bias is None else self.bias.to(self.compute_dtype) out = bnb.matmul_4bit(x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state) out = out.to(inp_dtype) return out class LinearFP4(Linear4bit): """ Implements the FP4 data type. """ def __init__( self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True, quant_storage=torch.uint8, device=None, ): """ Args: input_features (`str`): Number of input features of the linear layer. output_features (`str`): Number of output features of the linear layer. bias (`bool`, defaults to `True`): Whether the linear class uses the bias term as well. """ super().__init__( input_features, output_features, bias, compute_dtype, compress_statistics, "fp4", quant_storage, device, ) class LinearNF4(Linear4bit): """Implements the NF4 data type. Constructs a quantization data type where each bin has equal area under a standard normal distribution N(0, 1) that is normalized into the range [-1, 1]. For more information read the paper: QLoRA: Efficient Finetuning of Quantized LLMs (https://arxiv.org/abs/2305.14314) Implementation of the NF4 data type in bitsandbytes can be found in the `create_normal_map` function in the `functional.py` file: https://github.com/TimDettmers/bitsandbytes/blob/main/bitsandbytes/functional.py#L236. """ def __init__( self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True, quant_storage=torch.uint8, device=None, ): """ Args: input_features (`str`): Number of input features of the linear layer. output_features (`str`): Number of output features of the linear layer. bias (`bool`, defaults to `True`): Whether the linear class uses the bias term as well. """ super().__init__( input_features, output_features, bias, compute_dtype, compress_statistics, "nf4", quant_storage, device, ) class Int8Params(torch.nn.Parameter): def __new__( cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None, ): cls.has_fp16_weights = has_fp16_weights cls.CB = None cls.SCB = None if data is None: data = torch.empty(0) obj = torch.Tensor._make_subclass(cls, data, requires_grad) obj.CB, obj.SCB = cls.CB, cls.SCB return obj def cuda(self, device): if self.has_fp16_weights: return super().cuda(device) else: # we store the 8-bit rows-major weight # we convert this weight to the turning/ampere weight during the first inference pass B = self.data.contiguous().half().cuda(device) CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B) del CBt del SCBt self.data = CB self.CB = CB self.SCB = SCB return self @overload def to( self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ..., non_blocking: bool = ..., ) -> T: ... @overload def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T: ... @overload def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T: ... def to(self, *args, **kwargs): device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) if device is not None and device.type == "cuda" and self.data.device.type == "cpu": return self.cuda(device) else: new_param = Int8Params( super().to(device=device, dtype=dtype, non_blocking=non_blocking), requires_grad=self.requires_grad, has_fp16_weights=self.has_fp16_weights, ) new_param.CB = self.CB new_param.SCB = self.SCB return new_param def maybe_rearrange_weight(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): weight = state_dict.get(f"{prefix}weight") if weight is None: # if the state dict has no weights for this layer (e.g., LoRA finetuning), do nothing return weight_format = state_dict.pop(f"{prefix}weight_format", "row") if isinstance(weight_format, torch.Tensor): weight_format = weight_format.item() # For new weights format storage type, we explicitly check # if weights_format is on the mapping if isinstance(weight_format, int) and weight_format not in INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING: raise ValueError(f"Expected supported weight format - got {weight_format}") elif isinstance(weight_format, int) and weight_format in INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING: weight_format = INVERSE_LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING[weight_format] if weight_format != "row": tile_indices = get_tile_inds(weight_format, weight.device) state_dict[f"{prefix}weight"] = undo_layout(weight, tile_indices) class Linear8bitLt(nn.Linear): """ This class is the base module for the [LLM.int8()](https://arxiv.org/abs/2208.07339) algorithm. To read more about it, have a look at the paper. In order to quantize a linear layer one should first load the original fp16 / bf16 weights into the Linear8bitLt module, then call `int8_module.to("cuda")` to quantize the fp16 weights. Example: ```python import torch import torch.nn as nn import bitsandbytes as bnb from bnb.nn import Linear8bitLt fp16_model = nn.Sequential( nn.Linear(64, 64), nn.Linear(64, 64) ) int8_model = nn.Sequential( Linear8bitLt(64, 64, has_fp16_weights=False), Linear8bitLt(64, 64, has_fp16_weights=False) ) int8_model.load_state_dict(fp16_model.state_dict()) int8_model = int8_model.to(0) # Quantization happens here ``` """ def __init__( self, input_features: int, output_features: int, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None, device=None, ): """ Initialize Linear8bitLt class. Args: input_features (`int`): Number of input features of the linear layer. output_features (`int`): Number of output features of the linear layer. bias (`bool`, defaults to `True`): Whether the linear class uses the bias term as well. """ super().__init__(input_features, output_features, bias, device) assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0" self.state = bnb.MatmulLtState() self.index = index self.state.threshold = threshold self.state.has_fp16_weights = has_fp16_weights self.state.memory_efficient_backward = memory_efficient_backward if threshold > 0.0 and not has_fp16_weights: self.state.use_pool = True self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights) self._register_load_state_dict_pre_hook(maybe_rearrange_weight) def _save_to_state_dict(self, destination, prefix, keep_vars): super()._save_to_state_dict(destination, prefix, keep_vars) # we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data scb_name = "SCB" # case 1: .cuda was called, SCB is in self.weight param_from_weight = getattr(self.weight, scb_name) # case 2: self.init_8bit_state was called, SCB is in self.state param_from_state = getattr(self.state, scb_name) # case 3: SCB is in self.state, weight layout reordered after first forward() layout_reordered = self.state.CxB is not None key_name = prefix + f"{scb_name}" format_name = prefix + "weight_format" if not self.state.has_fp16_weights: if param_from_weight is not None: destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach() destination[format_name] = torch.tensor(0, dtype=torch.uint8) elif param_from_state is not None and not layout_reordered: destination[key_name] = param_from_state if keep_vars else param_from_state.detach() destination[format_name] = torch.tensor(0, dtype=torch.uint8) elif param_from_state is not None: destination[key_name] = param_from_state if keep_vars else param_from_state.detach() weights_format = self.state.formatB # At this point `weights_format` is an str if weights_format not in LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING: raise ValueError(f"Unrecognized weights format {weights_format}") weights_format = LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING[weights_format] destination[format_name] = torch.tensor(weights_format, dtype=torch.uint8) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) unexpected_copy = list(unexpected_keys) for key in unexpected_copy: input_name = key[len(prefix) :] if input_name == "SCB": if self.weight.SCB is None: # buffers not yet initialized, can't access them directly without quantizing first raise RuntimeError( "Loading a quantized checkpoint into non-quantized Linear8bitLt is " "not supported. Please call module.cuda() before module.load_state_dict()", ) input_param = state_dict[key] self.weight.SCB.copy_(input_param) if self.state.SCB is not None: self.state.SCB = self.weight.SCB unexpected_keys.remove(key) def init_8bit_state(self): self.state.CB = self.weight.CB self.state.SCB = self.weight.SCB self.weight.CB = None self.weight.SCB = None def forward(self, x: torch.Tensor): self.state.is_training = self.training if self.weight.CB is not None: self.init_8bit_state() # weights are cast automatically as Int8Params, but the bias has to be cast manually if self.bias is not None and self.bias.dtype != x.dtype: self.bias.data = self.bias.data.to(x.dtype) out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state) if not self.state.has_fp16_weights: if self.state.CB is not None and self.state.CxB is not None: # we converted 8-bit row major to turing/ampere format in the first inference pass # we no longer need the row-major weight del self.state.CB self.weight.data = self.state.CxB return out class OutlierAwareLinear(nn.Linear): def __init__(self, input_features, output_features, bias=True, device=None): super().__init__(input_features, output_features, bias, device) self.outlier_dim = None self.is_quantized = False def forward_with_outliers(self, x, outlier_idx): raise NotImplementedError("Please override the `forward_with_outliers(self, x, outlier_idx)` function") def quantize_weight(self, w, outlier_idx): raise NotImplementedError("Please override the `quantize_weights(self, w, outlier_idx)` function") def forward(self, x): if self.outlier_dim is None: tracer = OutlierTracer.get_instance() if not tracer.is_initialized(): print("Please use OutlierTracer.initialize(model) before using the OutlierAwareLinear layer") outlier_idx = tracer.get_outliers(self.weight) # print(outlier_idx, tracer.get_hvalue(self.weight)) self.outlier_dim = outlier_idx if not self.is_quantized: w = self.quantize_weight(self.weight, self.outlier_dim) self.weight.data.copy_(w) self.is_quantized = True class SwitchBackLinearBnb(nn.Linear): def __init__( self, input_features, output_features, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None, device=None, ): super().__init__(input_features, output_features, bias, device) self.state = bnb.MatmulLtState() self.index = index self.state.threshold = threshold self.state.has_fp16_weights = has_fp16_weights self.state.memory_efficient_backward = memory_efficient_backward if threshold > 0.0 and not has_fp16_weights: self.state.use_pool = True self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights) def init_8bit_state(self): self.state.CB = self.weight.CB self.state.SCB = self.weight.SCB self.weight.CB = None self.weight.SCB = None def forward(self, x): self.state.is_training = self.training if self.weight.CB is not None: self.init_8bit_state() out = bnb.matmul_mixed(x.half(), self.weight.half(), bias=None, state=self.state) + self.bias