bitsandbytes/optim/adagrad.py (116 lines of code) (raw):

# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer1State class Adagrad(Optimizer1State): def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ Base Adagrad optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-2): The learning rate. lr_decay (`int`, defaults to 0): The learning rate decay. weight_decay (`float`, defaults to 0.0): The weight decay value for the optimizer. initial_accumulator_value (`int`, defaults to 0): The initial momemtum values. eps (`float`, defaults to 1e-10): The epsilon value prevents division by zero in the optimizer. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. """ if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if initial_accumulator_value != 0.0: raise ValueError("Initial accumulator value != 0.0 not supported!") if lr_decay != 0.0: raise ValueError("Lr Decay != 0.0 not supported!") super().__init__( "adagrad", params, lr, (0.0, 0.0), eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, ) class Adagrad8bit(Optimizer1State): def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, optim_bits=8, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ 8-bit Adagrad optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-2): The learning rate. lr_decay (`int`, defaults to 0): The learning rate decay. weight_decay (`float`, defaults to 0.0): The weight decay value for the optimizer. initial_accumulator_value (`int`, defaults to 0): The initial momemtum values. eps (`float`, defaults to 1e-10): The epsilon value prevents division by zero in the optimizer. optim_bits (`int`, defaults to 8): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. """ if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if initial_accumulator_value != 0.0: raise ValueError("Initial accumulator value != 0.0 not supported!") if lr_decay != 0.0: raise ValueError("Lr Decay != 0.0 not supported!") assert block_wise super().__init__( "adagrad", params, lr, (0.0, 0.0), eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, ) class Adagrad32bit(Optimizer1State): def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ 32-bit Adagrad optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-2): The learning rate. lr_decay (`int`, defaults to 0): The learning rate decay. weight_decay (`float`, defaults to 0.0): The weight decay value for the optimizer. initial_accumulator_value (`int`, defaults to 0): The initial momemtum values. eps (`float`, defaults to 1e-10): The epsilon value prevents division by zero in the optimizer. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. """ if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if initial_accumulator_value != 0.0: raise ValueError("Initial accumulator value != 0.0 not supported!") if lr_decay != 0.0: raise ValueError("Lr Decay != 0.0 not supported!") super().__init__( "adagrad", params, lr, (0.0, 0.0), eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, )