bitsandbytes/optim/adamw.py (178 lines of code) (raw):

# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer2State class AdamW(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False, ): """ Base AdamW optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-3): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. eps (`float`, defaults to 1e-8): The epsilon value prevents division by zero in the optimizer. weight_decay (`float`, defaults to 1e-2): The weight decay value for the optimizer. amsgrad (`bool`, defaults to `False`): Whether to use the [AMSGrad](https://hf.co/papers/1904.09237) variant of Adam that uses the maximum of past squared gradients instead. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged, ) class AdamW8bit(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False, ): """ 8-bit AdamW optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-3): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. eps (`float`, defaults to 1e-8): The epsilon value prevents division by zero in the optimizer. weight_decay (`float`, defaults to 1e-2): The weight decay value for the optimizer. amsgrad (`bool`, defaults to `False`): Whether to use the [AMSGrad](https://hf.co/papers/1904.09237) variant of Adam that uses the maximum of past squared gradients instead. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged, ) class AdamW32bit(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False, ): """ 32-bit AdamW optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-3): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. eps (`float`, defaults to 1e-8): The epsilon value prevents division by zero in the optimizer. weight_decay (`float`, defaults to 1e-2): The weight decay value for the optimizer. amsgrad (`bool`, defaults to `False`): Whether to use the [AMSGrad](https://hf.co/papers/1904.09237) variant of Adam that uses the maximum of past squared gradients instead. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged, ) class PagedAdamW(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ Paged AdamW optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-3): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. eps (`float`, defaults to 1e-8): The epsilon value prevents division by zero in the optimizer. weight_decay (`float`, defaults to 1e-2): The weight decay value for the optimizer. amsgrad (`bool`, defaults to `False`): Whether to use the [AMSGrad](https://hf.co/papers/1904.09237) variant of Adam that uses the maximum of past squared gradients instead. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True, ) class PagedAdamW8bit(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ Paged 8-bit AdamW optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-3): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. eps (`float`, defaults to 1e-8): The epsilon value prevents division by zero in the optimizer. weight_decay (`float`, defaults to 1e-2): The weight decay value for the optimizer. amsgrad (`bool`, defaults to `False`): Whether to use the [AMSGrad](https://hf.co/papers/1904.09237) variant of Adam that uses the maximum of past squared gradients instead. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True, ) class PagedAdamW32bit(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ Paged 32-bit AdamW optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-3): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. eps (`float`, defaults to 1e-8): The epsilon value prevents division by zero in the optimizer. weight_decay (`float`, defaults to 1e-2): The weight decay value for the optimizer. amsgrad (`bool`, defaults to `False`): Whether to use the [AMSGrad](https://hf.co/papers/1904.09237) variant of Adam that uses the maximum of past squared gradients instead. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True, )