bitsandbytes/optim/lion.py (162 lines of code) (raw):

# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer1State class Lion(Optimizer1State): def __init__( self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False, ): """ Base Lion optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-4): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. weight_decay (`float`, defaults to 0): The weight decay value for the optimizer. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ super().__init__( "lion", params, lr, betas, 0.0, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged, ) class Lion8bit(Optimizer1State): def __init__( self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False, ): """ 8-bit Lion optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-4): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. weight_decay (`float`, defaults to 0): The weight decay value for the optimizer. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ super().__init__( "lion", params, lr, betas, 0.0, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged, ) class Lion32bit(Optimizer1State): def __init__( self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False, ): """ 32-bit Lion optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-4): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. weight_decay (`float`, defaults to 0): The weight decay value for the optimizer. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. is_paged (`bool`, defaults to `False`): Whether the optimizer is a paged optimizer or not. """ super().__init__( "lion", params, lr, betas, 0.0, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged, ) class PagedLion(Optimizer1State): def __init__( self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ Paged Lion optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-4): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. weight_decay (`float`, defaults to 0): The weight decay value for the optimizer. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. """ super().__init__( "lion", params, lr, betas, 0.0, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True, ) class PagedLion8bit(Optimizer1State): def __init__( self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ Paged 8-bit Lion optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-4): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. weight_decay (`float`, defaults to 0): The weight decay value for the optimizer. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. """ super().__init__( "lion", params, lr, betas, 0.0, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True, ) class PagedLion32bit(Optimizer1State): def __init__( self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ Paged 32-bit Lion optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-4): The learning rate. betas (`tuple(float, float)`, defaults to (0.9, 0.999)): The beta values are the decay rates of the first and second-order moment of the optimizer. weight_decay (`float`, defaults to 0): The weight decay value for the optimizer. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. """ super().__init__( "lion", params, lr, betas, 0.0, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True, )