bitsandbytes/optim/rmsprop.py (98 lines of code) (raw):

# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer1State class RMSprop(Optimizer1State): def __init__( self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ Base RMSprop optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-2): The learning rate. alpha (`float`, defaults to 0.99): The alpha value is the decay rate of the squared gradients of the optimizer. eps (`float`, defaults to 1e-8): The epsilon value prevents division by zero in the optimizer. weight_decay (`float`, defaults to 0.0): The weight decay value for the optimizer. momentum (`float`, defaults to 0): The momentum value speeds up the optimizer by taking bigger steps. centered (`bool`, defaults to `False`): Whether the gradients are normalized by the variance. If `True`, it can help training at the expense of additional compute. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. """ if alpha == 0: raise NotImplementedError("RMSprop with alpha==0.0 is not supported!") if centered: raise NotImplementedError("Centered RMSprop is not supported!") super().__init__( "rmsprop", params, lr, (alpha, momentum), eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, ) class RMSprop8bit(Optimizer1State): def __init__( self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ 8-bit RMSprop optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-2): The learning rate. alpha (`float`, defaults to 0.99): The alpha value is the decay rate of the squared gradients of the optimizer. eps (`float`, defaults to 1e-8): The epsilon value prevents division by zero in the optimizer. weight_decay (`float`, defaults to 0.0): The weight decay value for the optimizer. momentum (`float`, defaults to 0): The momentum value speeds up the optimizer by taking bigger steps. centered (`bool`, defaults to `False`): Whether the gradients are normalized by the variance. If `True`, it can help training at the expense of additional compute. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. """ if alpha == 0: raise NotImplementedError("RMSprop with alpha==0.0 is not supported!") if centered: raise NotImplementedError("Centered RMSprop is not supported!") super().__init__( "rmsprop", params, lr, (alpha, momentum), eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, ) class RMSprop32bit(Optimizer1State): def __init__( self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): """ 32-bit RMSprop optimizer. Arguments: params (`torch.tensor`): The input parameters to optimize. lr (`float`, defaults to 1e-2): The learning rate. alpha (`float`, defaults to 0.99): The alpha value is the decay rate of the squared gradients of the optimizer. eps (`float`, defaults to 1e-8): The epsilon value prevents division by zero in the optimizer. weight_decay (`float`, defaults to 0.0): The weight decay value for the optimizer. momentum (`float`, defaults to 0): The momentum value speeds up the optimizer by taking bigger steps. centered (`bool`, defaults to `False`): Whether the gradients are normalized by the variance. If `True`, it can help training at the expense of additional compute. optim_bits (`int`, defaults to 32): The number of bits of the optimizer state. args (`object`, defaults to `None`): An object with additional arguments. min_8bit_size (`int`, defaults to 4096): The minimum number of elements of the parameter tensors for 8-bit optimization. percentile_clipping (`int`, defaults to 100): Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability. block_wise (`bool`, defaults to `True`): Whether to independently quantize each block of tensors to reduce outlier effects and improve stability. """ if alpha == 0: raise NotImplementedError("RMSprop with alpha==0.0 is not supported!") if centered: raise NotImplementedError("Centered RMSprop is not supported!") super().__init__( "rmsprop", params, lr, (alpha, momentum), eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, )