bitsandbytes/optim/sgd.py (89 lines of code) (raw):
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from bitsandbytes.optim.optimizer import Optimizer1State
class SGD(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
"""
Base SGD optimizer.
Arguments:
params (`torch.tensor`):
The input parameters to optimize.
lr (`float`):
The learning rate.
momentum (`float`, defaults to 0):
The momentum value speeds up the optimizer by taking bigger steps.
dampening (`float`, defaults to 0):
The dampening value reduces the momentum of the optimizer.
weight_decay (`float`, defaults to 0.0):
The weight decay value for the optimizer.
nesterov (`bool`, defaults to `False`):
Whether to use Nesterov momentum.
optim_bits (`int`, defaults to 32):
The number of bits of the optimizer state.
args (`object`, defaults to `None`):
An object with additional arguments.
min_8bit_size (`int`, defaults to 4096):
The minimum number of elements of the parameter tensors for 8-bit optimization.
percentile_clipping (`int`, defaults to 100):
Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability.
block_wise (`bool`, defaults to `True`):
Whether to independently quantize each block of tensors to reduce outlier effects and improve stability.
"""
if momentum == 0:
raise NotImplementedError("SGD without momentum is not supported!")
super().__init__(
"momentum",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class SGD8bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
"""
8-bit SGD optimizer.
Arguments:
params (`torch.tensor`):
The input parameters to optimize.
lr (`float`):
The learning rate.
momentum (`float`, defaults to 0):
The momentum value speeds up the optimizer by taking bigger steps.
dampening (`float`, defaults to 0):
The dampening value reduces the momentum of the optimizer.
weight_decay (`float`, defaults to 0.0):
The weight decay value for the optimizer.
nesterov (`bool`, defaults to `False`):
Whether to use Nesterov momentum.
args (`object`, defaults to `None`):
An object with additional arguments.
min_8bit_size (`int`, defaults to 4096):
The minimum number of elements of the parameter tensors for 8-bit optimization.
percentile_clipping (`int`, defaults to 100):
Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability.
block_wise (`bool`, defaults to `True`):
Whether to independently quantize each block of tensors to reduce outlier effects and improve stability.
"""
if momentum == 0:
raise NotImplementedError("SGD without momentum is not supported!")
super().__init__(
"momentum",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class SGD32bit(Optimizer1State):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
"""
32-bit SGD optimizer.
Arguments:
params (`torch.tensor`):
The input parameters to optimize.
lr (`float`):
The learning rate.
momentum (`float`, defaults to 0):
The momentum value speeds up the optimizer by taking bigger steps.
dampening (`float`, defaults to 0):
The dampening value reduces the momentum of the optimizer.
weight_decay (`float`, defaults to 0.0):
The weight decay value for the optimizer.
nesterov (`bool`, defaults to `False`):
Whether to use Nesterov momentum.
args (`object`, defaults to `None`):
An object with additional arguments.
min_8bit_size (`int`, defaults to 4096):
The minimum number of elements of the parameter tensors for 8-bit optimization.
percentile_clipping (`int`, defaults to 100):
Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability.
block_wise (`bool`, defaults to `True`):
Whether to independently quantize each block of tensors to reduce outlier effects and improve stability.
"""
if momentum == 0:
raise NotImplementedError("SGD without momentum is not supported!")
super().__init__(
"momentum",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)