in assets/62_pytorch_fsdp/run_clm_no_trainer.py [0:0]
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all", logging_dir=args.output_dir) if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = datasets.DatasetDict(
{
"train": datasets.Dataset.from_dict(
load_dataset(args.dataset_name, args.dataset_config_name)["train"][: args.n_train + args.n_val]
)
}
)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
args.dataset_name,
args.dataset_config_name,
split=f"train[:{args.validation_split_percentage}%]",
)
raw_datasets["train"] = load_dataset(
args.dataset_name,
args.dataset_config_name,
split=f"train[{args.validation_split_percentage}%:]",
)
else:
data_files = {}
dataset_args = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.train_file.split(".")[-1]
if extension == "txt":
extension = "text"
dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks
raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
extension,
data_files=data_files,
split=f"train[:{args.validation_split_percentage}%]",
**dataset_args,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{args.validation_split_percentage}%:]",
**dataset_args,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = AutoConfig.from_pretrained(args.config_name)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if args.model_name_or_path:
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
else:
logger.info("Training new model from scratch")
model = AutoModelForCausalLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
column_names = raw_datasets["train"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
def tokenize_function(examples):
return tokenizer(examples[text_column_name])
with accelerator.main_process_first():
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
)
block_size = 1024
else:
if args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(args.block_size, tokenizer.model_max_length)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
with accelerator.main_process_first():
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
train_dataset = lm_datasets["train"]
eval_dataset = lm_datasets["validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(
eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size
)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("clm_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {int(args.max_train_steps/accelerator.num_processes)}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(int(args.max_train_steps / accelerator.num_processes)), disable=not accelerator.is_local_main_process
)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
losses.append(accelerator.gather(loss.repeat(args.per_device_eval_batch_size)))
losses = torch.cat(losses)
losses = losses[: len(eval_dataset)]
try:
perplexity = math.exp(torch.mean(losses))
except OverflowError:
perplexity = float("inf")
logger.info(f"epoch {epoch}: perplexity: {perplexity}")
if args.with_tracking:
accelerator.log(
{"perplexity": perplexity, "train_loss": total_loss, "epoch": epoch, "step": completed_steps},
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump({"perplexity": perplexity}, f)