def main()

in candle-pyo3/quant-llama.py [0:0]


def main():
    if len(sys.argv) < 2:
        raise ValueError("missing weight file argument")

    filename = sys.argv[1]
    print(f"reading model file {filename}")
    if filename.endswith("gguf"):
        all_tensors, metadata = utils.load_gguf(filename)
        vocab = metadata["tokenizer.ggml.tokens"]
        for i, v in enumerate(vocab):
            vocab[i] = "\n" if v == "<0x0A>" else v.replace("▁", " ")
        hparams = {k: v for (k, v) in metadata.items() if not k.startswith("tokenizer")}
        print(hparams)
        hparams = {
            "n_vocab": len(vocab),
            "n_embd": metadata["llama.embedding_length"],
            "n_mult": 256,
            "n_head": metadata["llama.attention.head_count"],
            "n_head_kv": metadata["llama.attention.head_count_kv"],
            "n_layer": metadata["llama.block_count"],
            "n_rot": metadata["llama.rope.dimension_count"],
            "rope_freq": metadata.get("llama.rope.freq_base", 10000.0),
            "ftype": metadata["general.file_type"],
            "context_length": metadata["llama.context_length"],
        }
        all_tensors = {gguf_rename(k): v for k, v in all_tensors.items()}
    else:
        all_tensors, hparams, vocab = utils.load_ggml(filename)
        hparams["context_length"] = 2048

    print(hparams)
    model = QuantizedLlama(hparams, all_tensors)
    print("model built, starting inference")

    tokens = [1]
    for token_idx in range(500):
        last_token = tokens[-1]
        lt = candle.tensor([last_token]).unsqueeze(0)
        logits = model.forward(lt, len(tokens))
        # Greedy sampling for now
        # pr = candle.nn.softmax(logits, -1)
        m = logits.get(0).argmax_keepdim(-1)
        next_token = m.values()[0]
        print(vocab[next_token], end="", flush=True)
        tokens.append(next_token)