in candle-flash-attn/kernels/flash_fwd_kernel.h [51:128]
inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bidb, const int bidh, const int m_block) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int kNWarps = Kernel_traits::kNWarps;
auto seed_offset = std::make_tuple(0ull, 0ull);
// auto seed_offset = at::cuda::philox::unpack(params.philox_args);
flash::Dropout dropout(std::get<0>(seed_offset), std::get<1>(seed_offset), params.p_dropout_in_uint8_t,
bidb, bidh, tidx, params.h);
// Save seed and offset for backward, before any early exiting. Otherwise the 0-th thread block might
// exit early and no one saves the rng states.
if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
params.rng_state[0] = std::get<0>(seed_offset);
params.rng_state[1] = std::get<1>(seed_offset);
}
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
if (Is_causal || Is_local) {
n_block_max = std::min(n_block_max,
cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
// printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
// }
}
// We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
// Otherwise we might read OOB elements from gK and gV.
if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
+ binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
make_shape(binfo.actual_seqlen_q, params.h, params.d),
make_stride(params.o_row_stride, params.o_head_stride, _1{}));
Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
Tensor gLSE = get_lse_tile<ElementAccum, Params, kBlockM, Is_even_MN>(params, bidb, bidh, m_block, binfo);
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
Tensor tOrO = make_tensor<Element>(shape(tOgO));
clear(tOrO);
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
}
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
);
#pragma unroll
for (int m = 0; m < size<1>(tOgO); ++m) {
const int row = get<0>(tOcO(0, m, 0));
if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
}
return;
}