candle-transformers/src/models/quantized_gemma3.rs (367 lines of code) (raw):
//! Gemma 3 model implementation with quantization support.
//!
//! Gemma 3 is a family of multimodal language models developed by Google.
//! This implementation provides quantization for reduced memory usage and faster inference.
//!
//! Key characteristics:
//! - Group-Query Attention (GQA) with specialized key-value heads
//! - RMSNorm for layer normalization
//! - Specialized attention patterns with separate normalization for Q/K/V
//! - Feed-forward network with SwiGLU activation
//! - Support for 2/3/4/8-bit quantization
//!
//! References:
//! - [Gemma 3 Models](https://blog.google/technology/developers/gemma-3/)
//!
use crate::quantized_nn::RmsNorm;
use candle::quantized::gguf_file;
use candle::quantized::QTensor;
use candle::D;
use candle::{DType, Device, IndexOp, Result, Tensor};
use candle_nn::{Embedding, Module};
pub const MAX_SEQ_LEN: usize = 131072; // Gemma 3 supports 128K context window
pub const DEFAULT_SLIDING_WINDOW_TYPE: usize = 6;
pub const DEFAULT_ROPE_FREQUENCY: f32 = 1_000_000.;
pub const DEFAULT_ROPE_FREQUENCY_SLIDING: f32 = 10_000.;
pub const DEFAULT_ROPE_FREQUENCY_SCALE_FACTOR: f32 = 1.;
#[derive(Debug, Clone)]
struct QMatMul {
inner: candle::quantized::QMatMul,
span: tracing::Span,
}
impl QMatMul {
fn from_qtensor(qtensor: QTensor) -> Result<Self> {
let inner = candle::quantized::QMatMul::from_qtensor(qtensor)?;
let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
Ok(Self { inner, span })
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(xs)
}
}
#[derive(Debug, Clone)]
struct Mlp {
feed_forward_gate: QMatMul, // ffn_gate in GGUF
feed_forward_up: QMatMul, // ffn_up in GGUF
feed_forward_down: QMatMul, // ffn_down in GGUF
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let gate = self.feed_forward_gate.forward(xs)?;
let up = self.feed_forward_up.forward(xs)?;
let silu = candle_nn::ops::silu(&gate)?;
let gated = (silu * up)?;
self.feed_forward_down.forward(&gated)
}
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
impl RotaryEmbedding {
fn new(head_dim: usize, rope_frequency: f32, device: &Device) -> Result<Self> {
let theta: Vec<_> = (0..head_dim)
.step_by(2)
.map(|i| 1f32 / rope_frequency.powf(i as f32 / head_dim as f32))
.collect();
let theta = Tensor::new(theta.as_slice(), device)?;
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
.to_dtype(DType::F32)?
.reshape((MAX_SEQ_LEN, 1))?
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
let cos = idx_theta.cos()?;
let sin = idx_theta.sin()?;
Ok(Self { sin, cos })
}
fn apply_rotary_emb_qkv(
&self,
q: &Tensor,
k: &Tensor,
index_pos: usize,
) -> Result<(Tensor, Tensor)> {
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
let cos = self.cos.narrow(0, index_pos, seq_len)?;
let sin = self.sin.narrow(0, index_pos, seq_len)?;
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
Ok((q_embed, k_embed))
}
}
#[derive(Debug, Clone)]
struct LayerWeights {
// Attention components
attention_wq: QMatMul,
attention_wk: QMatMul,
attention_wv: QMatMul,
attention_wo: QMatMul,
// Specialized normalization for Q and K
attention_q_norm: RmsNorm,
attention_k_norm: RmsNorm,
// Layer normalization
attention_norm: RmsNorm, // Applied before attention
post_attention_norm: RmsNorm, // Applied after attention
ffn_norm: RmsNorm, // Applied before feedforward
post_ffn_norm: RmsNorm, // Applied after feedforward
// Feed-forward network
mlp: Mlp,
// Attention parameters
n_head: usize, // Number of query heads
n_kv_head: usize, // Number of key-value heads
head_dim: usize, // Dimension of each head
q_dim: usize, // Total dimension for queries
sliding_window_size: Option<usize>,
rotary_embedding: RotaryEmbedding,
neg_inf: Tensor,
// Cache
kv_cache: Option<(Tensor, Tensor)>,
// Tracing
span_attn: tracing::Span,
span_mlp: tracing::Span,
}
impl LayerWeights {
fn mask(
&self,
b_sz: usize,
seq_len: usize,
index_pos: usize,
dtype: DType,
device: &Device,
) -> Result<Tensor> {
let mask: Vec<_> = if let Some(sliding_window_size) = self.sliding_window_size {
(0..seq_len)
.flat_map(|i| {
(0..seq_len).map(move |j| {
if i < j || j + sliding_window_size < i {
0u32
} else {
1u32
}
})
})
.collect()
} else {
(0..seq_len)
.flat_map(|i| (0..seq_len).map(move |j| if i < j { 0u32 } else { 1u32 }))
.collect()
};
let mask = Tensor::from_slice(&mask, (seq_len, seq_len), device)?;
let mask = if index_pos > 0 {
let mask0 = Tensor::zeros((seq_len, index_pos), DType::F32, device)?;
Tensor::cat(&[&mask0, &mask], D::Minus1)?
} else {
mask
};
mask.expand((b_sz, 1, seq_len, seq_len + index_pos))?
.to_dtype(dtype)
}
fn forward_attn(
&mut self,
x: &Tensor,
mask: Option<&Tensor>,
index_pos: usize,
) -> Result<Tensor> {
let _enter = self.span_attn.enter();
let (b_sz, seq_len, _) = x.dims3()?;
let q = self.attention_wq.forward(x)?;
let k = self.attention_wk.forward(x)?;
let v = self.attention_wv.forward(x)?;
let q = q
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
.transpose(1, 2)?;
let k = k
.reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
.transpose(1, 2)?;
let v = v
.reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
.transpose(1, 2)?;
let q = self.attention_q_norm.forward(&q.contiguous()?)?;
let k = self.attention_k_norm.forward(&k.contiguous()?)?;
let (q, k) = self
.rotary_embedding
.apply_rotary_emb_qkv(&q, &k, index_pos)?;
let (k, v) = match &self.kv_cache {
None => (k, v),
Some((k_cache, v_cache)) => {
if index_pos == 0 {
(k, v)
} else {
let k = Tensor::cat(&[k_cache, &k], 2)?; // concat on seq dim
let v = Tensor::cat(&[v_cache, &v], 2)?;
(k, v)
}
}
};
self.kv_cache = Some((k.clone(), v.clone())); // update cache
// Repeat KV for GQA
let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?;
let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?;
// Scaled Dot-Product Attention
let scale = 1.0 / (self.head_dim as f64).sqrt();
let mut attn_weights = (q.matmul(&k.transpose(2, 3)?)? * scale)?;
if let Some(mask) = mask {
let mask = mask.broadcast_as(attn_weights.shape())?;
let neg_inf = self.neg_inf.broadcast_as(attn_weights.dims())?;
attn_weights = mask.eq(0u32)?.where_cond(&neg_inf, &attn_weights)?;
}
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_weights.matmul(&v)?;
let attn_output = attn_output
.transpose(1, 2)?
.reshape((b_sz, seq_len, self.q_dim))?;
self.attention_wo.forward(&attn_output)
}
}
#[derive(Debug, Clone)]
pub struct ModelWeights {
tok_embeddings: Embedding,
embedding_length: usize,
layers: Vec<LayerWeights>,
norm: RmsNorm,
output: QMatMul,
span: tracing::Span,
span_output: tracing::Span,
}
impl ModelWeights {
pub fn from_gguf<R: std::io::Seek + std::io::Read>(
ct: gguf_file::Content,
reader: &mut R,
device: &Device,
) -> Result<Self> {
let md_get = |s: &str| match ct.metadata.get(s) {
None => candle::bail!("cannot find {s} in metadata"),
Some(v) => Ok(v),
};
let head_count = md_get("gemma3.attention.head_count")?.to_u32()? as usize;
let head_count_kv = md_get("gemma3.attention.head_count_kv")?.to_u32()? as usize;
let block_count = md_get("gemma3.block_count")?.to_u32()? as usize;
let embedding_length = md_get("gemma3.embedding_length")?.to_u32()? as usize;
let key_length = md_get("gemma3.attention.key_length")?.to_u32()? as usize;
let _value_length = md_get("gemma3.attention.value_length")?.to_u32()? as usize;
let rms_norm_eps = md_get("gemma3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
let sliding_window_size = md_get("gemma3.attention.sliding_window")?.to_u32()? as usize;
let sliding_window_type = md_get("gemma3.attention.sliding_window_type")
.and_then(|m| Ok(m.to_u32()? as usize))
.unwrap_or(DEFAULT_SLIDING_WINDOW_TYPE);
let rope_freq_base = md_get("gemma3.rope.freq_base")
.and_then(|m| m.to_f32())
.unwrap_or(DEFAULT_ROPE_FREQUENCY);
let rope_freq_base_sliding = md_get("gemma3.rope.local_freq_base")
.and_then(|m| m.to_f32())
.unwrap_or(DEFAULT_ROPE_FREQUENCY_SLIDING);
// Unused in Llama.cpp so we aren't using it here.
let _rope_freq_scaling_factor = md_get("gemma3.rope.scaling.factor")
.and_then(|m| m.to_f32())
.unwrap_or(DEFAULT_ROPE_FREQUENCY_SCALE_FACTOR);
// Compute the dimensions for queries, keys, and values
// These are the total dimensions when projected across all heads
let q_dim = head_count * key_length;
let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
// Load token embeddings and output projection
let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
let tok_embeddings = tok_embeddings.dequantize(device)?;
let norm = RmsNorm::from_qtensor(
ct.tensor(reader, "output_norm.weight", device)?,
rms_norm_eps,
)?;
let output = match ct.tensor(reader, "output.weight", device) {
Ok(tensor) => tensor,
Err(_) => ct.tensor(reader, "token_embd.weight", device)?, // Use tied weights if output.weight doesn't exist
};
let mut layers = Vec::with_capacity(block_count);
for layer_idx in 0..block_count {
let prefix = format!("blk.{layer_idx}");
let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"), device)?;
let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"), device)?;
let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"), device)?;
let attention_wo =
ct.tensor(reader, &format!("{prefix}.attn_output.weight"), device)?;
let attention_q_norm = RmsNorm::from_qtensor(
ct.tensor(reader, &format!("{prefix}.attn_q_norm.weight"), device)?,
rms_norm_eps,
)?;
let attention_k_norm = RmsNorm::from_qtensor(
ct.tensor(reader, &format!("{prefix}.attn_k_norm.weight"), device)?,
rms_norm_eps,
)?;
let attention_norm = RmsNorm::from_qtensor(
ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?,
rms_norm_eps,
)?;
let post_attention_norm = RmsNorm::from_qtensor(
ct.tensor(
reader,
&format!("{prefix}.post_attention_norm.weight"),
device,
)?,
rms_norm_eps,
)?;
let ffn_norm = RmsNorm::from_qtensor(
ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?,
rms_norm_eps,
)?;
let post_ffn_norm = RmsNorm::from_qtensor(
ct.tensor(reader, &format!("{prefix}.post_ffw_norm.weight"), device)?,
rms_norm_eps,
)?;
let feed_forward_gate =
ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"), device)?;
let feed_forward_up = ct.tensor(reader, &format!("{prefix}.ffn_up.weight"), device)?;
let feed_forward_down =
ct.tensor(reader, &format!("{prefix}.ffn_down.weight"), device)?;
let mlp = Mlp {
feed_forward_gate: QMatMul::from_qtensor(feed_forward_gate)?,
feed_forward_up: QMatMul::from_qtensor(feed_forward_up)?,
feed_forward_down: QMatMul::from_qtensor(feed_forward_down)?,
};
// Sliding window pattern hardcoded to 6 because it's not explicitly defined
let is_sliding = (layer_idx + 1) % sliding_window_type > 0;
let sliding_window_size = is_sliding.then_some(sliding_window_size);
let layer_rope_frequency = if is_sliding {
rope_freq_base_sliding
} else {
rope_freq_base
};
let rotary_embedding = RotaryEmbedding::new(key_length, layer_rope_frequency, device)?;
// Tracing spans
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
layers.push(LayerWeights {
attention_wq: QMatMul::from_qtensor(attention_wq)?,
attention_wk: QMatMul::from_qtensor(attention_wk)?,
attention_wv: QMatMul::from_qtensor(attention_wv)?,
attention_wo: QMatMul::from_qtensor(attention_wo)?,
attention_q_norm,
attention_k_norm,
attention_norm,
post_attention_norm,
ffn_norm,
post_ffn_norm,
mlp,
n_head: head_count,
n_kv_head: head_count_kv,
head_dim: key_length,
q_dim,
sliding_window_size,
rotary_embedding,
neg_inf: neg_inf.clone(),
kv_cache: None,
span_attn,
span_mlp,
})
}
let span = tracing::span!(tracing::Level::TRACE, "model");
let span_output = tracing::span!(tracing::Level::TRACE, "output");
Ok(Self {
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
embedding_length,
layers,
norm,
output: QMatMul::from_qtensor(output)?,
span,
span_output,
})
}
pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
let (b_sz, seq_len) = x.dims2()?;
let _enter = self.span.enter();
let mut layer_in = self.tok_embeddings.forward(x)?;
layer_in = (layer_in * (self.embedding_length as f64).sqrt())?;
for layer in self.layers.iter_mut() {
let attention_mask = if seq_len == 1 {
None
} else {
Some(layer.mask(b_sz, seq_len, index_pos, x.dtype(), x.device())?)
};
// Attention block
let residual = &layer_in;
let x = layer.attention_norm.forward(&layer_in)?;
let x = layer.forward_attn(&x, attention_mask.as_ref(), index_pos)?;
let x = layer.post_attention_norm.forward(&x)?;
let x = (x + residual)?;
// Feed-forward block
let _enter = layer.span_mlp.enter();
let residual = &x;
let x = layer.ffn_norm.forward(&x)?;
let x = layer.mlp.forward(&x)?;
let x = layer.post_ffn_norm.forward(&x)?;
let x = (x + residual)?;
drop(_enter);
layer_in = x;
}
let _enter = self.span_output.enter();
let x = layer_in.i((.., seq_len - 1, ..))?;
let x = self.norm.forward(&x)?;
let output = self.output.forward(&x)?;
Ok(output)
}
}