chart/env/prod.yaml (711 lines of code) (raw):
image:
repository: huggingface
name: chat-ui
nodeSelector:
role-huggingchat: "true"
tolerations:
- key: "huggingface.co/huggingchat"
operator: "Equal"
value: "true"
effect: "NoSchedule"
serviceAccount:
enabled: true
create: true
name: huggingchat-prod
ingress:
path: "/chat"
annotations:
alb.ingress.kubernetes.io/healthcheck-path: "/healthcheck"
alb.ingress.kubernetes.io/listen-ports: "[{\"HTTP\": 80}, {\"HTTPS\": 443}]"
alb.ingress.kubernetes.io/group.name: "hub-prod"
alb.ingress.kubernetes.io/scheme: "internet-facing"
alb.ingress.kubernetes.io/ssl-redirect: "443"
alb.ingress.kubernetes.io/tags: "Env=prod,Project=hub,Terraform=true"
alb.ingress.kubernetes.io/target-node-labels: "role-hub-utils=true"
kubernetes.io/ingress.class: "alb"
ingressInternal:
enabled: true
path: "/chat"
annotations:
alb.ingress.kubernetes.io/group.name: hub-prod-internal-public
alb.ingress.kubernetes.io/healthcheck-path: "/healthcheck"
alb.ingress.kubernetes.io/listen-ports: "[{\"HTTP\": 80}, {\"HTTPS\": 443}]"
alb.ingress.kubernetes.io/load-balancer-name: hub-prod-internal-public
alb.ingress.kubernetes.io/target-group-attributes: deregistration_delay.timeout_seconds=30
alb.ingress.kubernetes.io/target-node-labels: role-hub-lb=true
alb.ingress.kubernetes.io/target-type: ip
kubernetes.io/ingress.class: "alb"
envVars:
ADDRESS_HEADER: 'X-Forwarded-For'
ADMIN_CLI_LOGIN: "false"
ALTERNATIVE_REDIRECT_URLS: '["huggingchat://login/callback"]'
APP_BASE: "/chat"
ALLOW_IFRAME: "false"
COMMUNITY_TOOLS: "true"
COOKIE_SAMESITE: "lax"
COOKIE_SECURE: "true"
ENABLE_ASSISTANTS: "true"
ENABLE_ASSISTANTS_RAG: "true"
ENABLE_CONFIG_MANAGER: "false"
METRICS_PORT: 5565
LOG_LEVEL: "debug"
METRICS_ENABLED: "true"
MODELS: >
[
{
"name": "meta-llama/Llama-3.3-70B-Instruct",
"id": "meta-llama/Llama-3.3-70B-Instruct",
"description": "Ideal for everyday use. A fast and extremely capable model matching closed source models' capabilities. Now with the latest Llama 3.3 weights!",
"modelUrl": "https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct",
"websiteUrl": "https://llama.meta.com/",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/meta-logo.png",
"tools": true,
"preprompt": "",
"parameters": {
"stop": ["<|endoftext|>", "<|eot_id|>"],
"temperature": 0.6,
"max_new_tokens": 1024,
"truncate": 7167
},
"endpoints": [{"type" : "inference-client"}],
"promptExamples": [
{
"title": "Write an email",
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
},
{
"title": "Code a game",
"prompt": "Code a basic snake game in python, give explanations for each step."
},
{
"title": "Recipe help",
"prompt": "How do I make a delicious lemon cheesecake?"
}
]
},
{
"name": "Qwen/Qwen3-235B-A22B",
"description": "Qwen's flagship model featuring optional reasoning. Exceptional performance with benchmarks rivaling R1 and o1.",
"modelUrl": "https://huggingface.co/Qwen/Qwen3-235B-A22B",
"websiteUrl": "https://qwenlm.github.io/blog/qwen3/",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/qwen-logo.png",
"preprompt": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
"reasoning": {
"type": "tokens",
"beginToken": "<think>",
"endToken": "</think>"
},
"parameters": {
"stop": ["<|endoftext|>", "<|im_end|>"],
"temperature": 0.6,
},
"tools": true,
"promptExamples": [
{
"title": "Write an email",
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12) /nothink"
},
{
"title": "Build a website",
"prompt": "Generate a snazzy static landing page for a local coffee shop using HTML and CSS. You can use tailwind using <script src='https://cdn.tailwindcss.com'></script>."
},
{
"title": "Larger number",
"prompt": "9.11 or 9.9 which number is larger?"
},
],
"endpoints": [
{
"type": "inference-client",
"baseURL": "https://api-inference.endpoints.huggingface.tech/models/Qwen/Qwen3-235B-A22B/v1"
}
]
},
{
"name": "Qwen/Qwen2.5-72B-Instruct",
"description": "The latest Qwen open model with improved role-playing, long text generation and structured data understanding.",
"modelUrl": "https://huggingface.co/Qwen/Qwen2.5-72B-Instruct",
"websiteUrl": "https://qwenlm.github.io/blog/qwen2.5/",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/qwen-logo.png",
"preprompt": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
"parameters": {
"stop": ["<|endoftext|>", "<|im_end|>"],
"temperature": 0.6,
"truncate": 28672,
"max_new_tokens": 3072
},
"tools": true,
"endpoints": [{"type" : "inference-client"}],
"promptExamples": [
{
"title": "Write an email",
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
},
{
"title": "Code a game",
"prompt": "Code a basic snake game in python, give explanations for each step."
},
{
"title": "Recipe help",
"prompt": "How do I make a delicious lemon cheesecake?"
}
]
},
{
"name": "CohereLabs/c4ai-command-r-plus-08-2024",
"description": "Cohere's largest language model, optimized for conversational interaction and tool use. Now with the 2024 update!",
"modelUrl": "https://huggingface.co/CohereLabs/c4ai-command-r-plus-08-2024",
"websiteUrl": "https://docs.cohere.com/docs/command-r-plus",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/cohere-logo.png",
"tools": true,
"systemRoleSupported": false,
"parameters": {
"stop": ["<|END_OF_TURN_TOKEN|>", "<|im_end|>"],
"truncate": 28672,
"max_new_tokens": 2048,
"temperature": 0.3
},
"endpoints": [{"type" : "inference-client"}],
"promptExamples": [
{
"title": "Generate image",
"prompt": "Generate the portrait of a scientific mouse in its laboratory."
},
{
"title": "Review code",
"prompt": "Review this pull request: https://github.com/huggingface/chat-ui/pull/1131/files"
},
{
"title": "Code a game",
"prompt": "Code a basic snake game in python, give explanations for each step."
}
]
},
{
"name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"modelUrl": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"websiteUrl": "https://deepseek.com/",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/deepseek-logo.png",
"description": "The first reasoning model from DeepSeek, distilled into a 32B dense model. Outperforms o1-mini on multiple benchmarks.",
"reasoning": {
"type": "tokens",
"beginToken": "",
"endToken": "</think>"
},
"tools": true,
"promptExamples": [
{
"title": "Rs in strawberry",
"prompt": "how many R in strawberry?"
},
{
"title": "Larger number",
"prompt": "9.11 or 9.9 which number is larger?"
},
{
"title": "Measuring 6 liters",
"prompt": "I have a 6- and a 12-liter jug. I want to measure exactly 6 liters."
}
],
"endpoints": [
{
"type": "inference-client",
"baseURL": "https://b8xf586h164t4vk7.us-east-1.aws.endpoints.huggingface.cloud/v1"
}
]
},
{
"name": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"modelUrl": "https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"websiteUrl": "https://www.nvidia.com/",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/nvidia-logo.png",
"description": "Nvidia's latest Llama fine-tune, topping alignment benchmarks and optimized for instruction following.",
"parameters": {
"stop": ["<|eot_id|>", "<|im_end|>"],
"temperature": 0.5,
"truncate": 28672,
"max_new_tokens": 2048
},
"promptExamples": [
{
"title": "Rs in strawberry",
"prompt": "how many R in strawberry?"
},
{
"title": "Larger number",
"prompt": "9.11 or 9.9 which number is larger?"
},
{
"title": "Measuring 6 liters",
"prompt": "I have a 6- and a 12-liter jug. I want to measure exactly 6 liters."
}
],
"endpoints": [
{
"type": "inference-client",
"baseURL": "https://api-inference.endpoints.huggingface.tech/models/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF/v1"
}
]
},
{
"name": "Qwen/QwQ-32B",
"tools": true,
"preprompt": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.",
"modelUrl": "https://huggingface.co/Qwen/QwQ-32B",
"websiteUrl": "https://qwenlm.github.io/blog/qwq-32b/",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/qwen-logo.png",
"description": "QwQ is the latest reasoning model released by the Qwen team, approaching the capabilities of R1 in benchmarks.",
"reasoning": {
"type": "tokens",
"beginToken": "",
"endToken": "</think>"
},
"promptExamples": [
{
"title": "Rs in strawberry",
"prompt": "how many R in strawberry?"
},
{
"title": "Larger number",
"prompt": "9.11 or 9.9 which number is larger?"
},
{
"title": "Measuring 6 liters",
"prompt": "I have a 6- and a 12-liter jug. I want to measure exactly 6 liters."
}
],
"endpoints": [
{
"type": "inference-client",
}
]
},
{
"name": "google/gemma-3-27b-it",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/google-logo.png",
"multimodal": true,
"tools": true,
"systemRoleSupported" : false,
"description": "Google's latest open model with great multilingual performance, supports image inputs natively.",
"websiteUrl": "https://blog.google/technology/developers/gemma-3/",
"promptExamples": [
{
"title": "Write an email",
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
},
{
"title": "Code a game",
"prompt": "Code a basic snake game in python, give explanations for each step."
},
{
"title": "Recipe help",
"prompt": "How do I make a delicious lemon cheesecake?"
}
],
"endpoints": [
{
"type": "inference-client",
"baseURL": "https://wp0d3hn6s3k8jk22.us-east-1.aws.endpoints.huggingface.cloud/v1",
"multimodal": {
"image": {
"maxSizeInMB": 10,
"maxWidth": 560,
"maxHeight": 560,
"supportedMimeTypes": ["image/jpeg", "image/png", "image/webp"],
"preferredMimeType": "image/webp"
}
}
}
]
},
{
"name": "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"tools": true,
"displayName": "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"description": "A small model with good capabilities in language understanding and commonsense reasoning.",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/mistral-logo.png",
"websiteUrl": "https://mistral.ai/news/mistral-nemo/",
"modelUrl": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"preprompt": "",
"promptExamples": [
{
"title": "Write an email",
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
},
{
"title": "Code a game",
"prompt": "Code a basic snake game in python, give explanations for each step."
},
{
"title": "Recipe help",
"prompt": "How do I make a delicious lemon cheesecake?"
}
],
"endpoints": [
{
"type": "inference-client",
"baseURL": "https://hkjfqcryevvq9cie.us-east-1.aws.endpoints.huggingface.cloud/v1"
}
]
},
{
"name": "Qwen/Qwen2.5-VL-32B-Instruct",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/qwen-logo.png",
"description": "The latest multimodal model from Qwen! Supports image inputs natively.",
"websiteUrl": "https://qwenlm.github.io/blog/qwen2.5-vl/",
"modelUrl": "https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct",
"multimodal": true,
"promptExamples": [
{
"title": "Write an email",
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
},
{
"title": "Code a game",
"prompt": "Code a basic snake game in python, give explanations for each step."
},
{
"title": "Recipe help",
"prompt": "How do I make a delicious lemon cheesecake?"
}
],
"endpoints": [
{
"type": "inference-client",
"multimodal": {
"image": {
"maxSizeInMB": 10,
"maxWidth": 1024,
"maxHeight": 1024,
"supportedMimeTypes": ["image/png", "image/jpeg", "image/webp"],
"preferredMimeType": "image/webp"
}
}
}
]
},
{
"name": "microsoft/Phi-4",
"tools": true,
"systemRoleSupported": false,
"description": "One of the best small models, super fast for simple tasks.",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/microsoft-logo.png",
"modelUrl": "https://huggingface.co/microsoft/Phi-4",
"websiteUrl": "https://techcommunity.microsoft.com/blog/aiplatformblog/introducing-phi-4-microsoft%E2%80%99s-newest-small-language-model-specializing-in-comple/4357090",
"preprompt": "",
"parameters": {
"stop": ["<|end|>", "<|endoftext|>", "<|assistant|>"],
"temperature": 0.6,
"truncate": 28672,
"max_new_tokens": 3072
},
"promptExamples": [
{
"title": "Write an email",
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
},
{
"title": "Code a game",
"prompt": "Code a basic snake game in python, give explanations for each step."
},
{
"title": "Recipe help",
"prompt": "How do I make a delicious lemon cheesecake?"
}
],
"endpoints": [
{
"type": "inference-client",
"baseURL": "https://up5ijetg6a2e9zlb.us-east-1.aws.endpoints.huggingface.cloud/v1"
}
]
},
{
"name": "NousResearch/Hermes-3-Llama-3.1-8B",
"description": "Nous Research's latest Hermes 3 release in 8B size. Follows instruction closely.",
"tools": true,
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/nous-logo.png",
"websiteUrl": "https://nousresearch.com/",
"modelUrl": "https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B",
"promptExamples": [
{
"title": "Write an email",
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
},
{
"title": "Code a game",
"prompt": "Code a basic snake game in python, give explanations for each step."
},
{
"title": "Recipe help",
"prompt": "How do I make a delicious lemon cheesecake?"
}
],
"parameters": {
"stop": ["<|im_end|>"],
"temperature": 0.6,
"truncate": 14336,
"max_new_tokens": 1536
},
"endpoints": [{"type" : "inference-client"}]
}
]
NODE_ENV: "prod"
NODE_LOG_STRUCTURED_DATA: true
OLD_MODELS: >
[
{ "name": "bigcode/starcoder" },
{ "name": "OpenAssistant/oasst-sft-6-llama-30b-xor" },
{ "name": "HuggingFaceH4/zephyr-7b-alpha" },
{ "name": "openchat/openchat_3.5" },
{ "name": "openchat/openchat-3.5-1210" },
{ "name": "tiiuae/falcon-180B-chat" },
{ "name": "codellama/CodeLlama-34b-Instruct-hf" },
{ "name": "google/gemma-7b-it" },
{ "name": "meta-llama/Llama-2-70b-chat-hf" },
{ "name": "codellama/CodeLlama-70b-Instruct-hf" },
{ "name": "openchat/openchat-3.5-0106" },
{ "name": "meta-llama/Meta-Llama-3-70B-Instruct" },
{ "name": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8" },
{
"name": "CohereForAI/c4ai-command-r-plus-08-2024",
"transferTo": "CohereLabs/c4ai-command-r-plus-08-2024"
},
{
"name": "CohereForAI/c4ai-command-r-plus",
"transferTo": "CohereLabs/c4ai-command-r-plus-08-2024"
},
{
"name": "01-ai/Yi-1.5-34B-Chat",
"transferTo": "CohereLabs/c4ai-command-r-plus-08-2024"
},
{
"name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"transferTo": "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
},
{
"name": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"transferTo": "NousResearch/Hermes-3-Llama-3.1-8B"
},
{
"name": "mistralai/Mistral-7B-Instruct-v0.3",
"transferTo": "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
},
{
"name": "microsoft/Phi-3-mini-4k-instruct",
"transferTo": "microsoft/Phi-4"
},
{
"name": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"transferTo": "meta-llama/Llama-3.3-70B-Instruct"
},
{
"name": "Qwen/QwQ-32B-Preview",
"transferTo": "Qwen/QwQ-32B"
},
{
"name": "mistralai/Mistral-Nemo-Instruct-2407",
"transferTo": "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
},
{
"name": "microsoft/Phi-3.5-mini-instruct",
"transferTo": "microsoft/Phi-4"
},
{
"name": "Qwen/Qwen2.5-Coder-32B-Instruct",
"transferTo": "Qwen/QwQ-32B"
},
{
"name": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"transferTo" : "Qwen/Qwen2.5-VL-32B-Instruct"
}
]
PUBLIC_ORIGIN: "https://huggingface.co"
PUBLIC_SHARE_PREFIX: "https://hf.co/chat"
PUBLIC_ANNOUNCEMENT_BANNERS: >
[
{
"title": "Qwen 3 235B is available!",
"linkTitle": "Try it out!",
"linkHref": "https://huggingface.co/chat/models/Qwen/Qwen3-235B-A22B"
}
]
PUBLIC_APP_NAME: "HuggingChat"
PUBLIC_APP_ASSETS: "huggingchat"
PUBLIC_APP_COLOR: "yellow"
PUBLIC_APP_DESCRIPTION: "Making the community's best AI chat models available to everyone."
PUBLIC_APP_DISCLAIMER_MESSAGE: "Disclaimer: AI is an area of active research with known problems such as biased generation and misinformation. Do not use this application for high-stakes decisions or advice."
PUBLIC_APP_GUEST_MESSAGE: "Sign in with a free Hugging Face account to continue using HuggingChat."
PUBLIC_APP_DATA_SHARING: 0
PUBLIC_APP_DISCLAIMER: 1
PUBLIC_PLAUSIBLE_SCRIPT_URL: "/js/script.js"
REQUIRE_FEATURED_ASSISTANTS: "true"
TASK_MODEL: >
{
"name": "NousResearch/Hermes-3-Llama-3.1-8B",
"unlisted": true,
"endpoints": [{"type" : "inference-client"}],
"parameters": {
"temperature": 0.1,
"max_new_tokens": 256
}
}
TEXT_EMBEDDING_MODELS: >
[{
"name": "bge-base-en-v1-5-sxa",
"displayName": "bge-base-en-v1-5-sxa",
"chunkCharLength": 512,
"endpoints": [{
"type": "tei",
"url": "https://huggingchat-tei.hf.space/"
}]
}]
WEBSEARCH_BLOCKLIST: '["youtube.com", "twitter.com"]'
XFF_DEPTH: '2'
TOOLS: >
[
{
"_id": "000000000000000000000001",
"displayName": "Image Generation",
"description": "Use this tool to generate images based on a prompt.",
"color": "yellow",
"icon": "camera",
"baseUrl": "black-forest-labs/FLUX.1-schnell",
"name": "image_generation",
"endpoint": "/infer",
"inputs": [
{
"name": "prompt",
"description": "A prompt to generate an image from",
"paramType": "required",
"type": "str"
},
{ "name": "seed", "paramType": "fixed", "value": "0", "type": "float" },
{
"name": "randomize_seed",
"paramType": "fixed",
"value": "true",
"type": "bool"
},
{
"name": "width",
"description": "numeric value between 256 and 2048",
"paramType": "optional",
"default": 1024,
"type": "float"
},
{
"name": "height",
"description": "numeric value between 256 and 2048",
"paramType": "optional",
"default": 1024,
"type": "float"
},
{
"name": "num_inference_steps",
"paramType": "fixed",
"value": "4",
"type": "float"
}
],
"outputComponent": "image",
"outputComponentIdx": 0,
"showOutput": true
},
{
"_id": "000000000000000000000002",
"displayName": "Document Parser",
"description": "Use this tool to parse any document and get its content in markdown format.",
"color": "yellow",
"icon": "cloud",
"baseUrl": "huggingchat/document-parser",
"name": "document_parser",
"endpoint": "/predict",
"inputs": [
{
"name": "document",
"description": "Filename of the document to parse",
"paramType": "required",
"type": "file",
"mimeTypes": 'application/*'
},
{
"name": "filename",
"paramType": "fixed",
"value": "document.pdf",
"type": "str"
}
],
"outputComponent": "textbox",
"outputComponentIdx": 0,
"showOutput": false,
"isHidden": true
},
{
"_id": "000000000000000000000003",
"name": "edit_image",
"baseUrl": "multimodalart/cosxl",
"endpoint": "/run_edit",
"inputs": [
{
"name": "image",
"description": "The image path to be edited",
"paramType": "required",
"type": "file",
"mimeTypes": 'image/*'
},
{
"name": "prompt",
"description": "The prompt with which to edit the image",
"paramType": "required",
"type": "str"
},
{
"name": "negative_prompt",
"paramType": "fixed",
"value": "",
"type": "str"
},
{
"name": "guidance_scale",
"paramType": "fixed",
"value": 6.5,
"type": "float"
},
{
"name": "steps",
"paramType": "fixed",
"value": 30,
"type": "float"
}
],
"outputComponent": "image",
"showOutput": true,
"displayName": "Image Editor",
"color": "green",
"icon": "camera",
"description": "This tool lets you edit images",
"outputComponentIdx": 0
}
]
HF_ORG_ADMIN: '644171cfbd0c97265298aa99'
HF_ORG_EARLY_ACCESS: '5e67bd5b1009063689407478'
HF_API_ROOT: 'https://api-inference.endpoints.huggingface.tech/models'
infisical:
enabled: true
env: "prod-us-east-1"
autoscaling:
enabled: true
minReplicas: 12
maxReplicas: 30
targetMemoryUtilizationPercentage: "50"
targetCPUUtilizationPercentage: "50"
resources:
requests:
cpu: 2
memory: 4Gi
limits:
cpu: 4
memory: 8Gi
monitoring:
enabled: true