src/chug/image/build_transforms_doc.py [15:33]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        input_cfg: ImageInputCfg,
        is_training: bool = False,
        do_normalize: bool = True,
        aug_cfg: Optional[ImageAugCfg] = None,
        composed: bool = True,
):
    # an improved torchvision + custom op transforms (no albumentations)
    image_size = input_cfg.size
    interpolation_mode = str_to_interp_mode(input_cfg.interpolation)

    pp = []

    if input_cfg.crop_margin:
        pp += [CropMargin()]

    if input_cfg.align_long_axis:
        pp += [AlignLongAxis(image_size, interpolation=interpolation_mode)]

    if is_training:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/chug/image/build_transforms_doc.py [53:70]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        input_cfg: ImageInputCfg,
        is_training: bool = False,
        do_normalize: bool = True,
        aug_cfg: Optional[ImageAugCfg] = None,
        composed: bool = True,
):
    # an improved torchvision + custom op transforms (no albumentations)
    image_size = input_cfg.size
    interpolation_mode = str_to_interp_mode(input_cfg.interpolation)
    pp = []

    if input_cfg.crop_margin:
        pp += [CropMargin()]

    if input_cfg.align_long_axis:
        pp += [AlignLongAxis(image_size, interpolation=interpolation_mode)]

    if is_training:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



