src/controlnet_aux/dwpose/util.py [6:64]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
eps = 0.01


def smart_resize(x, s):
    Ht, Wt = s
    if x.ndim == 2:
        Ho, Wo = x.shape
        Co = 1
    else:
        Ho, Wo, Co = x.shape
    if Co == 3 or Co == 1:
        k = float(Ht + Wt) / float(Ho + Wo)
        return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
    else:
        return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)


def smart_resize_k(x, fx, fy):
    if x.ndim == 2:
        Ho, Wo = x.shape
        Co = 1
    else:
        Ho, Wo, Co = x.shape
    Ht, Wt = Ho * fy, Wo * fx
    if Co == 3 or Co == 1:
        k = float(Ht + Wt) / float(Ho + Wo)
        return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
    else:
        return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)


def padRightDownCorner(img, stride, padValue):
    h = img.shape[0]
    w = img.shape[1]

    pad = 4 * [None]
    pad[0] = 0 # up
    pad[1] = 0 # left
    pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
    pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right

    img_padded = img
    pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
    img_padded = np.concatenate((pad_up, img_padded), axis=0)
    pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
    img_padded = np.concatenate((pad_left, img_padded), axis=1)
    pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
    img_padded = np.concatenate((img_padded, pad_down), axis=0)
    pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
    img_padded = np.concatenate((img_padded, pad_right), axis=1)

    return img_padded, pad


def transfer(model, model_weights):
    transfered_model_weights = {}
    for weights_name in model.state_dict().keys():
        transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
    return transfered_model_weights
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/controlnet_aux/open_pose/util.py [8:66]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
eps = 0.01


def smart_resize(x, s):
    Ht, Wt = s
    if x.ndim == 2:
        Ho, Wo = x.shape
        Co = 1
    else:
        Ho, Wo, Co = x.shape
    if Co == 3 or Co == 1:
        k = float(Ht + Wt) / float(Ho + Wo)
        return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
    else:
        return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)


def smart_resize_k(x, fx, fy):
    if x.ndim == 2:
        Ho, Wo = x.shape
        Co = 1
    else:
        Ho, Wo, Co = x.shape
    Ht, Wt = Ho * fy, Wo * fx
    if Co == 3 or Co == 1:
        k = float(Ht + Wt) / float(Ho + Wo)
        return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
    else:
        return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)


def padRightDownCorner(img, stride, padValue):
    h = img.shape[0]
    w = img.shape[1]

    pad = 4 * [None]
    pad[0] = 0 # up
    pad[1] = 0 # left
    pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
    pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right

    img_padded = img
    pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
    img_padded = np.concatenate((pad_up, img_padded), axis=0)
    pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
    img_padded = np.concatenate((pad_left, img_padded), axis=1)
    pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
    img_padded = np.concatenate((img_padded, pad_down), axis=0)
    pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
    img_padded = np.concatenate((img_padded, pad_right), axis=1)

    return img_padded, pad


def transfer(model, model_weights):
    transfered_model_weights = {}
    for weights_name in model.state_dict().keys():
        transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
    return transfered_model_weights
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



