in src/controlnet_aux/mlsd/__init__.py [0:0]
def __call__(self, input_image, thr_v=0.1, thr_d=0.1, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
if "return_pil" in kwargs:
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
output_type = "pil" if kwargs["return_pil"] else "np"
if type(output_type) is bool:
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
if output_type:
output_type = "pil"
if not isinstance(input_image, np.ndarray):
input_image = np.array(input_image, dtype=np.uint8)
input_image = HWC3(input_image)
input_image = resize_image(input_image, detect_resolution)
assert input_image.ndim == 3
img = input_image
img_output = np.zeros_like(img)
try:
with torch.no_grad():
lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d)
for line in lines:
x_start, y_start, x_end, y_end = [int(val) for val in line]
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
except Exception as e:
pass
detected_map = img_output[:, :, 0]
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map