in src/controlnet_aux/zoe/zoedepth/utils/config.py [0:0]
def get_config(model_name, mode='train', dataset=None, **overwrite_kwargs):
"""Main entry point to get the config for the model.
Args:
model_name (str): name of the desired model.
mode (str, optional): "train" or "infer". Defaults to 'train'.
dataset (str, optional): If specified, the corresponding dataset configuration is loaded as well. Defaults to None.
Keyword Args: key-value pairs of arguments to overwrite the default config.
The order of precedence for overwriting the config is (Higher precedence first):
# 1. overwrite_kwargs
# 2. "config_version": Config file version if specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{config_version}.json
# 3. "version_name": Default Model version specific config specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{version_name}.json
# 4. common_config: Default config for all models specified in COMMON_CONFIG
Returns:
easydict: The config dictionary for the model.
"""
check_choices("Model", model_name, ["zoedepth", "zoedepth_nk"])
check_choices("Mode", mode, ["train", "infer", "eval"])
if mode == "train":
check_choices("Dataset", dataset, ["nyu", "kitti", "mix", None])
config = flatten({**COMMON_CONFIG, **COMMON_TRAINING_CONFIG})
config = update_model_config(config, mode, model_name)
# update with model version specific config
version_name = overwrite_kwargs.get("version_name", config["version_name"])
config = update_model_config(config, mode, model_name, version_name)
# update with config version if specified
config_version = overwrite_kwargs.get("config_version", None)
if config_version is not None:
print("Overwriting config with config_version", config_version)
config = update_model_config(config, mode, model_name, config_version)
# update with overwrite_kwargs
# Combined args are useful for hyperparameter search
overwrite_kwargs = split_combined_args(overwrite_kwargs)
config = {**config, **overwrite_kwargs}
# Casting to bool # TODO: Not necessary. Remove and test
for key in KEYS_TYPE_BOOL:
if key in config:
config[key] = bool(config[key])
# Model specific post processing of config
parse_list(config, "n_attractors")
# adjust n_bins for each bin configuration if bin_conf is given and n_bins is passed in overwrite_kwargs
if 'bin_conf' in config and 'n_bins' in overwrite_kwargs:
bin_conf = config['bin_conf'] # list of dicts
n_bins = overwrite_kwargs['n_bins']
new_bin_conf = []
for conf in bin_conf:
conf['n_bins'] = n_bins
new_bin_conf.append(conf)
config['bin_conf'] = new_bin_conf
if mode == "train":
orig_dataset = dataset
if dataset == "mix":
dataset = 'nyu' # Use nyu as default for mix. Dataset config is changed accordingly while loading the dataloader
if dataset is not None:
config['project'] = f"MonoDepth3-{orig_dataset}" # Set project for wandb
if dataset is not None:
config['dataset'] = dataset
config = {**DATASETS_CONFIG[dataset], **config}
config['model'] = model_name
typed_config = {k: infer_type(v) for k, v in config.items()}
# add hostname to config
config['hostname'] = platform.node()
return edict(typed_config)