in classification/train_edu_bert.py [0:0]
def main(args):
dataset = load_dataset(
args.dataset_name, split="train", cache_dir="/scratch/cosmo/cache/", num_proc=8
)
dataset = dataset.map(
lambda x: {args.target_column: np.clip(int(x[args.target_column]), 0, 5)},
num_proc=8,
)
dataset = dataset.cast_column(
args.target_column, ClassLabel(names=[str(i) for i in range(6)])
)
dataset = dataset.train_test_split(
train_size=0.9, seed=42, stratify_by_column=args.target_column
)
model = AutoModelForSequenceClassification.from_pretrained(
args.base_model_name,
num_labels=1,
classifier_dropout=0.0,
hidden_dropout_prob=0.0,
output_hidden_states=False,
)
tokenizer = AutoTokenizer.from_pretrained(
args.base_model_name,
model_max_length=min(model.config.max_position_embeddings, 512),
)
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
def preprocess(examples):
batch = tokenizer(examples["text"], truncation=True)
batch["labels"] = np.float32(examples[args.target_column])
return batch
dataset = dataset.map(preprocess, batched=True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
for param in model.bert.embeddings.parameters():
param.requires_grad = False
for param in model.bert.encoder.parameters():
param.requires_grad = False
training_args = TrainingArguments(
output_dir=args.checkpoint_dir,
hub_model_id=args.output_model_name,
eval_strategy="steps",
save_strategy="steps",
eval_steps=1000,
save_steps=1000,
logging_steps=100,
learning_rate=3e-4,
num_train_epochs=20,
seed=0,
per_device_train_batch_size=256,
per_device_eval_batch_size=128,
eval_on_start=True,
load_best_model_at_end=True,
metric_for_best_model="f1_macro",
greater_is_better=True,
bf16=True,
push_to_hub=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model(os.path.join(args.checkpoint_dir, "final"))