def get_lr()

in training/mup.py [0:0]


    def get_lr(self) -> List[float]:
        """Compute learning rate using chainable form of the scheduler."""
        if not self._get_lr_called_within_step:
            warnings.warn(
                "To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.",
                UserWarning,
            )

        if self.last_epoch == 0:
            return [self.warmup_start_lr] * len(self.base_lrs)
        if self.last_epoch < self.warmup_epochs:
            return [
                group["lr"] + (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1)
                for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)
            ]
        if self.last_epoch == self.warmup_epochs:
            return self.base_lrs
        if (self.last_epoch - 1 - self.max_epochs) % (2 * (self.max_epochs - self.warmup_epochs)) == 0:
            return [
                group["lr"]
                + (base_lr - self.eta_min) * (1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs))) / 2
                for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)
            ]

        return [
            (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs)))
            / (
                1
                + math.cos(
                    math.pi * (self.last_epoch - self.warmup_epochs - 1) / (self.max_epochs - self.warmup_epochs)
                )
            )
            * (group["lr"] - self.eta_min)
            + self.eta_min
            for group in self.optimizer.param_groups
        ]