training/mup.py (278 lines of code) (raw):
"""
muP Preparation from https://github.com/microsoft/mutransformers#basic-usage-of-models
!git clone https://github.com/microsoft/mutransformers.git
%cd mutransformers
!pip install -r requirements.txt
!pip install -e .
!pip install -q datasets
With our CC-like architectures we found that
7m params & 100M tokens -> 8.1 loss
1b1 params & 100M tokens -> 6.6 loss
2b8 params & 100M tokens -> 7.5 loss
So looking to run the last two, which in our CC setup have the hyperparams:
(d_model ffw_size kv_size n_heads n_layers)
PARAM_1143M=(1792 7168 128 14 26)
PARAM_2980M=(2560 10240 128 20 34)
target_config -> base_config: Divide width by 10 to 20 / Generally have 128 as width ; Adapt num_attention_heads, too (128 hidden & 8 heads)
base_config -> delta_config: Multiply hidden size by 2
Do small HP optim on LR at small scale:
Run tiny grid search at 64 hidden size (200M params) on init std 0.1 / default; make same warmup as prior experiments; Use batch size from prior experiments; Use cosine deacying to 10%
Then use those HPs found for 1B & 2b8 models
"""
### Cosine Annealing with Warmup from
### https://github.com/Lightning-Universe/lightning-bolts/blob/master/pl_bolts/optimizers/lr_scheduler.py
import warnings
import math
from typing import List
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
class LinearWarmupCosineAnnealingLR(_LRScheduler):
"""Sets the learning rate of each parameter group to follow a linear warmup schedule between warmup_start_lr
and base_lr followed by a cosine annealing schedule between base_lr and eta_min.
.. warning::
It is recommended to call :func:`.step()` for :class:`LinearWarmupCosineAnnealingLR`
after each iteration as calling it after each epoch will keep the starting lr at
warmup_start_lr for the first epoch which is 0 in most cases.
.. warning::
passing epoch to :func:`.step()` is being deprecated and comes with an EPOCH_DEPRECATION_WARNING.
It calls the :func:`_get_closed_form_lr()` method for this scheduler instead of
:func:`get_lr()`. Though this does not change the behavior of the scheduler, when passing
epoch param to :func:`.step()`, the user should call the :func:`.step()` function before calling
train and validation methods.
Example:
>>> layer = nn.Linear(10, 1)
>>> optimizer = Adam(layer.parameters(), lr=0.02)
>>> scheduler = LinearWarmupCosineAnnealingLR(optimizer, warmup_epochs=10, max_epochs=40)
>>> #
>>> # the default case
>>> for epoch in range(40):
... # train(...)
... # validate(...)
... scheduler.step()
>>> #
>>> # passing epoch param case
>>> for epoch in range(40):
... scheduler.step(epoch)
... # train(...)
... # validate(...)
"""
def __init__(
self,
optimizer: Optimizer,
warmup_epochs: int,
max_epochs: int,
warmup_start_lr: float = 0.0,
eta_min: float = 0.0,
last_epoch: int = -1,
) -> None:
"""
Args:
optimizer (Optimizer): Wrapped optimizer.
warmup_epochs (int): Maximum number of iterations for linear warmup
max_epochs (int): Maximum number of iterations
warmup_start_lr (float): Learning rate to start the linear warmup. Default: 0.
eta_min (float): Minimum learning rate. Default: 0.
last_epoch (int): The index of last epoch. Default: -1.
"""
self.warmup_epochs = warmup_epochs
self.max_epochs = max_epochs
self.warmup_start_lr = warmup_start_lr
self.eta_min = eta_min
super().__init__(optimizer, last_epoch)
def get_lr(self) -> List[float]:
"""Compute learning rate using chainable form of the scheduler."""
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.",
UserWarning,
)
if self.last_epoch == 0:
return [self.warmup_start_lr] * len(self.base_lrs)
if self.last_epoch < self.warmup_epochs:
return [
group["lr"] + (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1)
for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)
]
if self.last_epoch == self.warmup_epochs:
return self.base_lrs
if (self.last_epoch - 1 - self.max_epochs) % (2 * (self.max_epochs - self.warmup_epochs)) == 0:
return [
group["lr"]
+ (base_lr - self.eta_min) * (1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs))) / 2
for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)
]
return [
(1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs)))
/ (
1
+ math.cos(
math.pi * (self.last_epoch - self.warmup_epochs - 1) / (self.max_epochs - self.warmup_epochs)
)
)
* (group["lr"] - self.eta_min)
+ self.eta_min
for group in self.optimizer.param_groups
]
def _get_closed_form_lr(self) -> List[float]:
"""Called when epoch is passed as a param to the `step` function of the scheduler."""
if self.last_epoch < self.warmup_epochs:
return [
self.warmup_start_lr + self.last_epoch * (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1)
for base_lr in self.base_lrs
]
return [
self.eta_min
+ 0.5
* (base_lr - self.eta_min)
* (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs)))
for base_lr in self.base_lrs
]
TARGET_CONFIG = {
"test": {
"hidden_size": 1024,
"intermediate_size": 1024*4,
"num_attention_heads": 32,
"num_layers": 12,
"batch_size": 256,
"per_device_train_batch_size": 4,
},
"200M": { # 203668480
"hidden_size": 1024,
"intermediate_size": 1024*4,
"num_attention_heads": 32,
"num_layers": 12,
"batch_size": 256,
"per_device_train_batch_size": 4,
},
"800M": { # 709326848
"hidden_size": 1024*2,
"intermediate_size": 1024*4*2,
"num_attention_heads": 32*2,
"num_layers": 12,
"batch_size": 256,
"per_device_train_batch_size": 2,
},
"1B": { # 1516975104
"hidden_size": 1024*3,
"intermediate_size": 1024*4*3,
"num_attention_heads": 32*2,
"num_layers": 12,
"batch_size": 256,
"per_device_train_batch_size": 2,
},
"2B": { # 1766073088
"hidden_size": int(1024*3.25),
"intermediate_size": int(1024*3.25)*4,
"num_attention_heads": 32*4,
"num_layers": 12,
"batch_size": 256,
"per_device_train_batch_size": 1,
},
"2B5": { # 2626613248
"hidden_size": int(1024*4),
"intermediate_size": int(1024*4)*4,
"num_attention_heads": 32*4,
"num_layers": 12,
"batch_size": 512,
"per_device_train_batch_size": 1,
},
"3B": { # 2951208704
"hidden_size": int(1024*4.25),
"intermediate_size": int(1024*4.25)*4,
"num_attention_heads": 32*4,
"num_layers": 12,
"batch_size": 512,
"per_device_train_batch_size": 1,
},
"3B5": { # 3294678528
"hidden_size": int(1024*4.5),
"intermediate_size": int(1024*4.5)*4,
"num_attention_heads": 32*4,
"num_layers": 12,
"batch_size": 512,
"per_device_train_batch_size": 1,
},
"1B1": {
"hidden_size": 1792,
"intermediate_size": 1792*4,
"num_attention_heads": 14,
"num_layers": 26,
"batch_size": 256,
"per_device_train_batch_size": 1,
},
"2B8": {
"hidden_size": 2560,
"intermediate_size": 2560*4,
"num_attention_heads": 20,
"num_layers": 34,
"batch_size": 512,
"per_device_train_batch_size": 1,
},
}
CONFIG_TO_RUN = "2B" # MODIFY BASED ON DESIRED CONFIG
USE_MUP = True
RUN_OFFLINE = True
# method-params-tokens
model_name = "sp" if not USE_MUP else "mup"
model_name += f"-{CONFIG_TO_RUN}".lower()
model_name += "-100m"
BASE_HIDDEN = 128
BASE_INTERMEDIATE = 256
BASE_NUM_ATTENTION_HEADS = 8
LR = 1e-3 if USE_MUP else 2e-4 # MUP default LR & SP default LR
INIT_RANGE = 0.01 # MUP default init range
if RUN_OFFLINE:
import os
os.environ["HF_DATASETS_OFFLINE"] = "1"
BATCH_SIZE = TARGET_CONFIG[CONFIG_TO_RUN]["batch_size"]
if USE_MUP:
from mutransformers import GPT2Config, GPT2LMHeadModel
from mup import make_base_shapes, set_base_shapes, MuAdamW
# define a base model
base_config = GPT2Config(
hidden_size=BASE_HIDDEN,
intermediate_size=BASE_INTERMEDIATE,
num_attention_heads=BASE_NUM_ATTENTION_HEADS,
initializer_range=INIT_RANGE,
)
base_model = GPT2LMHeadModel(config=base_config)
# define a delta models where we vary all "widths" we want to vary
delta_config = GPT2Config(
hidden_size=BASE_HIDDEN*2,
intermediate_size=BASE_INTERMEDIATE*2,
num_attention_heads=BASE_NUM_ATTENTION_HEADS*2,
initializer_range=INIT_RANGE,
)
delta_model = GPT2LMHeadModel(config=delta_config)
# define a base shape object based on comparing delta_model against base_model
base_shapes = make_base_shapes(base_model, delta_model, savefile='gpt256.bsh')
# define target model
target_config = GPT2Config(
hidden_size=TARGET_CONFIG[CONFIG_TO_RUN]["hidden_size"],
intermediate_size=TARGET_CONFIG[CONFIG_TO_RUN]["intermediate_size"],
num_attention_heads=TARGET_CONFIG[CONFIG_TO_RUN]["num_attention_heads"],
num_layers=TARGET_CONFIG[CONFIG_TO_RUN]["num_layers"],
initializer_range=INIT_RANGE,
use_cache=False,
)
else:
from transformers import GPT2Config, GPT2LMHeadModel
# define target model
target_config = GPT2Config(
hidden_size=TARGET_CONFIG[CONFIG_TO_RUN]["hidden_size"],
intermediate_size=TARGET_CONFIG[CONFIG_TO_RUN]["intermediate_size"],
num_attention_heads=TARGET_CONFIG[CONFIG_TO_RUN]["num_attention_heads"],
num_layers=TARGET_CONFIG[CONFIG_TO_RUN]["num_layers"],
use_cache=False,
)
target_model = GPT2LMHeadModel(config=target_config)
if USE_MUP:
# set base shapes
set_base_shapes(target_model, base_shapes)
# you can alternatively load base shape from file
# set_base_shapes(target_model, 'bert256.bsh')
# re-initialize
target_model.apply(target_model._init_weights)
# make sure to use mup optimizers for training
optimizer = MuAdamW(target_model.parameters(), lr=LR)
else:
from transformers import AdamW
optimizer = AdamW(target_model.parameters(), lr=LR)
import numpy as np
model_parameters = filter(lambda p: p.requires_grad, target_model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("Number of trainable parameters: ", params)
"""
Training code
Train billion parameter models on 100M tokens of C4
Adapted from:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb
"""
from datasets import load_dataset
# git clone https://huggingface.co/datasets/datablations/c4-100m
datasets = load_dataset('./c4-100m')
# wget https://huggingface.co/datasets/allenai/c4/resolve/main/en/c4-validation.00000-of-00008.json.gz
# val_dataset = load_dataset('json', data_files='c4-validation.00000-of-00008.json.gz')['train']
val_dataset = load_dataset('json', data_files='c4-validation.*-of-00008.json.gz')['train']
# val_dataset = load_dataset('c4', 'en', split='validation[:10%]')
datasets["validation"] = val_dataset
datasets = datasets.select_columns("text")
from transformers import AutoTokenizer, Trainer, TrainingArguments
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenized_datasets = datasets.map(lambda x: tokenizer(x["text"]), batched=True, num_proc=4, remove_columns=["text"])
block_size = tokenizer.model_max_length
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
batch_size=1000,
num_proc=4,
)
num_steps = len(lm_datasets["train"]) // BATCH_SIZE
scheduler = LinearWarmupCosineAnnealingLR(
optimizer,
warmup_epochs=num_steps // 100, # 1% of training steps
max_epochs=num_steps,
eta_min=LR / 10, # Decay to 10% of LR
)
per_device_train_batch_size = TARGET_CONFIG[CONFIG_TO_RUN]["per_device_train_batch_size"]
gradient_accumulation_steps = BATCH_SIZE // per_device_train_batch_size
training_args = TrainingArguments(
model_name,
evaluation_strategy="steps",
weight_decay=0.01,
push_to_hub=not(RUN_OFFLINE),
per_device_train_batch_size=per_device_train_batch_size,
per_device_eval_batch_size=32,
num_train_epochs=1,
gradient_accumulation_steps=gradient_accumulation_steps,
save_steps=100,
bf16=True,
#gradient_checkpointing=True, # Use if OOM
)
# If loading pre-trained model for eval
#from mutransformers import GPT2Config, GPT2LMHeadModel
#from mup import make_base_shapes, set_base_shapes, MuAdamW
#model_name = "mup-2b-100m-e3"
#target_model = GPT2LMHeadModel.from_pretrained(model_name)
#set_base_shapes(target_model, base_shapes)
#set_base_shapes(target_model, 'gpt256.bsh')
trainer = Trainer(
model=target_model,
args=training_args,
train_dataset=lm_datasets["train"], # .select(range(256)), # Testing
eval_dataset=lm_datasets["validation"],
optimizers=(optimizer, scheduler), # Use mup optimizer & cosine scheduler
)
if USE_MUP:
del base_model
del delta_model
trainer.train()
# Continue training
# trainer.train("checkpoint-100")
if RUN_OFFLINE:
trainer.save_model(model_name)
else:
trainer.push_to_hub()
import math
eval_results = trainer.evaluate()
print(f"Loss: {eval_results['eval_loss']:.4f}")
print(f"Perplexity: {math.exp(eval_results['eval_loss']):.4f}")
import json
with open(f"{model_name}-full.json", "w") as f:
json.dump(eval_results, f)