training/mup.py (278 lines of code) (raw):

""" muP Preparation from https://github.com/microsoft/mutransformers#basic-usage-of-models !git clone https://github.com/microsoft/mutransformers.git %cd mutransformers !pip install -r requirements.txt !pip install -e . !pip install -q datasets With our CC-like architectures we found that 7m params & 100M tokens -> 8.1 loss 1b1 params & 100M tokens -> 6.6 loss 2b8 params & 100M tokens -> 7.5 loss So looking to run the last two, which in our CC setup have the hyperparams: (d_model ffw_size kv_size n_heads n_layers) PARAM_1143M=(1792 7168 128 14 26) PARAM_2980M=(2560 10240 128 20 34) target_config -> base_config: Divide width by 10 to 20 / Generally have 128 as width ; Adapt num_attention_heads, too (128 hidden & 8 heads) base_config -> delta_config: Multiply hidden size by 2 Do small HP optim on LR at small scale: Run tiny grid search at 64 hidden size (200M params) on init std 0.1 / default; make same warmup as prior experiments; Use batch size from prior experiments; Use cosine deacying to 10% Then use those HPs found for 1B & 2b8 models """ ### Cosine Annealing with Warmup from ### https://github.com/Lightning-Universe/lightning-bolts/blob/master/pl_bolts/optimizers/lr_scheduler.py import warnings import math from typing import List from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler class LinearWarmupCosineAnnealingLR(_LRScheduler): """Sets the learning rate of each parameter group to follow a linear warmup schedule between warmup_start_lr and base_lr followed by a cosine annealing schedule between base_lr and eta_min. .. warning:: It is recommended to call :func:`.step()` for :class:`LinearWarmupCosineAnnealingLR` after each iteration as calling it after each epoch will keep the starting lr at warmup_start_lr for the first epoch which is 0 in most cases. .. warning:: passing epoch to :func:`.step()` is being deprecated and comes with an EPOCH_DEPRECATION_WARNING. It calls the :func:`_get_closed_form_lr()` method for this scheduler instead of :func:`get_lr()`. Though this does not change the behavior of the scheduler, when passing epoch param to :func:`.step()`, the user should call the :func:`.step()` function before calling train and validation methods. Example: >>> layer = nn.Linear(10, 1) >>> optimizer = Adam(layer.parameters(), lr=0.02) >>> scheduler = LinearWarmupCosineAnnealingLR(optimizer, warmup_epochs=10, max_epochs=40) >>> # >>> # the default case >>> for epoch in range(40): ... # train(...) ... # validate(...) ... scheduler.step() >>> # >>> # passing epoch param case >>> for epoch in range(40): ... scheduler.step(epoch) ... # train(...) ... # validate(...) """ def __init__( self, optimizer: Optimizer, warmup_epochs: int, max_epochs: int, warmup_start_lr: float = 0.0, eta_min: float = 0.0, last_epoch: int = -1, ) -> None: """ Args: optimizer (Optimizer): Wrapped optimizer. warmup_epochs (int): Maximum number of iterations for linear warmup max_epochs (int): Maximum number of iterations warmup_start_lr (float): Learning rate to start the linear warmup. Default: 0. eta_min (float): Minimum learning rate. Default: 0. last_epoch (int): The index of last epoch. Default: -1. """ self.warmup_epochs = warmup_epochs self.max_epochs = max_epochs self.warmup_start_lr = warmup_start_lr self.eta_min = eta_min super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: """Compute learning rate using chainable form of the scheduler.""" if not self._get_lr_called_within_step: warnings.warn( "To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning, ) if self.last_epoch == 0: return [self.warmup_start_lr] * len(self.base_lrs) if self.last_epoch < self.warmup_epochs: return [ group["lr"] + (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) ] if self.last_epoch == self.warmup_epochs: return self.base_lrs if (self.last_epoch - 1 - self.max_epochs) % (2 * (self.max_epochs - self.warmup_epochs)) == 0: return [ group["lr"] + (base_lr - self.eta_min) * (1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs))) / 2 for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) ] return [ (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) / ( 1 + math.cos( math.pi * (self.last_epoch - self.warmup_epochs - 1) / (self.max_epochs - self.warmup_epochs) ) ) * (group["lr"] - self.eta_min) + self.eta_min for group in self.optimizer.param_groups ] def _get_closed_form_lr(self) -> List[float]: """Called when epoch is passed as a param to the `step` function of the scheduler.""" if self.last_epoch < self.warmup_epochs: return [ self.warmup_start_lr + self.last_epoch * (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) for base_lr in self.base_lrs ] return [ self.eta_min + 0.5 * (base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) for base_lr in self.base_lrs ] TARGET_CONFIG = { "test": { "hidden_size": 1024, "intermediate_size": 1024*4, "num_attention_heads": 32, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 4, }, "200M": { # 203668480 "hidden_size": 1024, "intermediate_size": 1024*4, "num_attention_heads": 32, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 4, }, "800M": { # 709326848 "hidden_size": 1024*2, "intermediate_size": 1024*4*2, "num_attention_heads": 32*2, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 2, }, "1B": { # 1516975104 "hidden_size": 1024*3, "intermediate_size": 1024*4*3, "num_attention_heads": 32*2, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 2, }, "2B": { # 1766073088 "hidden_size": int(1024*3.25), "intermediate_size": int(1024*3.25)*4, "num_attention_heads": 32*4, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 1, }, "2B5": { # 2626613248 "hidden_size": int(1024*4), "intermediate_size": int(1024*4)*4, "num_attention_heads": 32*4, "num_layers": 12, "batch_size": 512, "per_device_train_batch_size": 1, }, "3B": { # 2951208704 "hidden_size": int(1024*4.25), "intermediate_size": int(1024*4.25)*4, "num_attention_heads": 32*4, "num_layers": 12, "batch_size": 512, "per_device_train_batch_size": 1, }, "3B5": { # 3294678528 "hidden_size": int(1024*4.5), "intermediate_size": int(1024*4.5)*4, "num_attention_heads": 32*4, "num_layers": 12, "batch_size": 512, "per_device_train_batch_size": 1, }, "1B1": { "hidden_size": 1792, "intermediate_size": 1792*4, "num_attention_heads": 14, "num_layers": 26, "batch_size": 256, "per_device_train_batch_size": 1, }, "2B8": { "hidden_size": 2560, "intermediate_size": 2560*4, "num_attention_heads": 20, "num_layers": 34, "batch_size": 512, "per_device_train_batch_size": 1, }, } CONFIG_TO_RUN = "2B" # MODIFY BASED ON DESIRED CONFIG USE_MUP = True RUN_OFFLINE = True # method-params-tokens model_name = "sp" if not USE_MUP else "mup" model_name += f"-{CONFIG_TO_RUN}".lower() model_name += "-100m" BASE_HIDDEN = 128 BASE_INTERMEDIATE = 256 BASE_NUM_ATTENTION_HEADS = 8 LR = 1e-3 if USE_MUP else 2e-4 # MUP default LR & SP default LR INIT_RANGE = 0.01 # MUP default init range if RUN_OFFLINE: import os os.environ["HF_DATASETS_OFFLINE"] = "1" BATCH_SIZE = TARGET_CONFIG[CONFIG_TO_RUN]["batch_size"] if USE_MUP: from mutransformers import GPT2Config, GPT2LMHeadModel from mup import make_base_shapes, set_base_shapes, MuAdamW # define a base model base_config = GPT2Config( hidden_size=BASE_HIDDEN, intermediate_size=BASE_INTERMEDIATE, num_attention_heads=BASE_NUM_ATTENTION_HEADS, initializer_range=INIT_RANGE, ) base_model = GPT2LMHeadModel(config=base_config) # define a delta models where we vary all "widths" we want to vary delta_config = GPT2Config( hidden_size=BASE_HIDDEN*2, intermediate_size=BASE_INTERMEDIATE*2, num_attention_heads=BASE_NUM_ATTENTION_HEADS*2, initializer_range=INIT_RANGE, ) delta_model = GPT2LMHeadModel(config=delta_config) # define a base shape object based on comparing delta_model against base_model base_shapes = make_base_shapes(base_model, delta_model, savefile='gpt256.bsh') # define target model target_config = GPT2Config( hidden_size=TARGET_CONFIG[CONFIG_TO_RUN]["hidden_size"], intermediate_size=TARGET_CONFIG[CONFIG_TO_RUN]["intermediate_size"], num_attention_heads=TARGET_CONFIG[CONFIG_TO_RUN]["num_attention_heads"], num_layers=TARGET_CONFIG[CONFIG_TO_RUN]["num_layers"], initializer_range=INIT_RANGE, use_cache=False, ) else: from transformers import GPT2Config, GPT2LMHeadModel # define target model target_config = GPT2Config( hidden_size=TARGET_CONFIG[CONFIG_TO_RUN]["hidden_size"], intermediate_size=TARGET_CONFIG[CONFIG_TO_RUN]["intermediate_size"], num_attention_heads=TARGET_CONFIG[CONFIG_TO_RUN]["num_attention_heads"], num_layers=TARGET_CONFIG[CONFIG_TO_RUN]["num_layers"], use_cache=False, ) target_model = GPT2LMHeadModel(config=target_config) if USE_MUP: # set base shapes set_base_shapes(target_model, base_shapes) # you can alternatively load base shape from file # set_base_shapes(target_model, 'bert256.bsh') # re-initialize target_model.apply(target_model._init_weights) # make sure to use mup optimizers for training optimizer = MuAdamW(target_model.parameters(), lr=LR) else: from transformers import AdamW optimizer = AdamW(target_model.parameters(), lr=LR) import numpy as np model_parameters = filter(lambda p: p.requires_grad, target_model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) print("Number of trainable parameters: ", params) """ Training code Train billion parameter models on 100M tokens of C4 Adapted from: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb """ from datasets import load_dataset # git clone https://huggingface.co/datasets/datablations/c4-100m datasets = load_dataset('./c4-100m') # wget https://huggingface.co/datasets/allenai/c4/resolve/main/en/c4-validation.00000-of-00008.json.gz # val_dataset = load_dataset('json', data_files='c4-validation.00000-of-00008.json.gz')['train'] val_dataset = load_dataset('json', data_files='c4-validation.*-of-00008.json.gz')['train'] # val_dataset = load_dataset('c4', 'en', split='validation[:10%]') datasets["validation"] = val_dataset datasets = datasets.select_columns("text") from transformers import AutoTokenizer, Trainer, TrainingArguments tokenizer = AutoTokenizer.from_pretrained("gpt2") tokenized_datasets = datasets.map(lambda x: tokenizer(x["text"]), batched=True, num_proc=4, remove_columns=["text"]) block_size = tokenizer.model_max_length def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result lm_datasets = tokenized_datasets.map( group_texts, batched=True, batch_size=1000, num_proc=4, ) num_steps = len(lm_datasets["train"]) // BATCH_SIZE scheduler = LinearWarmupCosineAnnealingLR( optimizer, warmup_epochs=num_steps // 100, # 1% of training steps max_epochs=num_steps, eta_min=LR / 10, # Decay to 10% of LR ) per_device_train_batch_size = TARGET_CONFIG[CONFIG_TO_RUN]["per_device_train_batch_size"] gradient_accumulation_steps = BATCH_SIZE // per_device_train_batch_size training_args = TrainingArguments( model_name, evaluation_strategy="steps", weight_decay=0.01, push_to_hub=not(RUN_OFFLINE), per_device_train_batch_size=per_device_train_batch_size, per_device_eval_batch_size=32, num_train_epochs=1, gradient_accumulation_steps=gradient_accumulation_steps, save_steps=100, bf16=True, #gradient_checkpointing=True, # Use if OOM ) # If loading pre-trained model for eval #from mutransformers import GPT2Config, GPT2LMHeadModel #from mup import make_base_shapes, set_base_shapes, MuAdamW #model_name = "mup-2b-100m-e3" #target_model = GPT2LMHeadModel.from_pretrained(model_name) #set_base_shapes(target_model, base_shapes) #set_base_shapes(target_model, 'gpt256.bsh') trainer = Trainer( model=target_model, args=training_args, train_dataset=lm_datasets["train"], # .select(range(256)), # Testing eval_dataset=lm_datasets["validation"], optimizers=(optimizer, scheduler), # Use mup optimizer & cosine scheduler ) if USE_MUP: del base_model del delta_model trainer.train() # Continue training # trainer.train("checkpoint-100") if RUN_OFFLINE: trainer.save_model(model_name) else: trainer.push_to_hub() import math eval_results = trainer.evaluate() print(f"Loss: {eval_results['eval_loss']:.4f}") print(f"Perplexity: {math.exp(eval_results['eval_loss']):.4f}") import json with open(f"{model_name}-full.json", "w") as f: json.dump(eval_results, f)