def _generate_tables()

in src/datasets/packaged_modules/json/json.py [0:0]


    def _generate_tables(self, files):
        for file_idx, file in enumerate(itertools.chain.from_iterable(files)):
            # If the file is one json object and if we need to look at the items in one specific field
            if self.config.field is not None:
                with open(file, encoding=self.config.encoding, errors=self.config.encoding_errors) as f:
                    dataset = ujson_loads(f.read())
                # We keep only the field we are interested in
                dataset = dataset[self.config.field]
                df = pandas_read_json(io.StringIO(ujson_dumps(dataset)))
                if df.columns.tolist() == [0]:
                    df.columns = list(self.config.features) if self.config.features else ["text"]
                pa_table = pa.Table.from_pandas(df, preserve_index=False)
                yield file_idx, self._cast_table(pa_table)

            # If the file has one json object per line
            else:
                with open(file, "rb") as f:
                    batch_idx = 0
                    # Use block_size equal to the chunk size divided by 32 to leverage multithreading
                    # Set a default minimum value of 16kB if the chunk size is really small
                    block_size = max(self.config.chunksize // 32, 16 << 10)
                    encoding_errors = (
                        self.config.encoding_errors if self.config.encoding_errors is not None else "strict"
                    )
                    while True:
                        batch = f.read(self.config.chunksize)
                        if not batch:
                            break
                        # Finish current line
                        try:
                            batch += f.readline()
                        except (AttributeError, io.UnsupportedOperation):
                            batch += readline(f)
                        # PyArrow only accepts utf-8 encoded bytes
                        if self.config.encoding != "utf-8":
                            batch = batch.decode(self.config.encoding, errors=encoding_errors).encode("utf-8")
                        try:
                            while True:
                                try:
                                    pa_table = paj.read_json(
                                        io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size)
                                    )
                                    break
                                except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
                                    if (
                                        isinstance(e, pa.ArrowInvalid)
                                        and "straddling" not in str(e)
                                        or block_size > len(batch)
                                    ):
                                        raise
                                    else:
                                        # Increase the block size in case it was too small.
                                        # The block size will be reset for the next file.
                                        logger.debug(
                                            f"Batch of {len(batch)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}."
                                        )
                                        block_size *= 2
                        except pa.ArrowInvalid as e:
                            try:
                                with open(
                                    file, encoding=self.config.encoding, errors=self.config.encoding_errors
                                ) as f:
                                    df = pandas_read_json(f)
                            except ValueError:
                                logger.error(f"Failed to load JSON from file '{file}' with error {type(e)}: {e}")
                                raise e
                            if df.columns.tolist() == [0]:
                                df.columns = list(self.config.features) if self.config.features else ["text"]
                            try:
                                pa_table = pa.Table.from_pandas(df, preserve_index=False)
                            except pa.ArrowInvalid as e:
                                logger.error(
                                    f"Failed to convert pandas DataFrame to Arrow Table from file '{file}' with error {type(e)}: {e}"
                                )
                                raise ValueError(
                                    f"Failed to convert pandas DataFrame to Arrow Table from file {file}."
                                ) from None
                            yield file_idx, self._cast_table(pa_table)
                            break
                        yield (file_idx, batch_idx), self._cast_table(pa_table)
                        batch_idx += 1