def _arrow_array_to_numpy()

in src/datasets/formatting/formatting.py [0:0]


    def _arrow_array_to_numpy(self, pa_array: pa.Array) -> np.ndarray:
        if isinstance(pa_array, pa.ChunkedArray):
            if isinstance(pa_array.type, _ArrayXDExtensionType):
                # don't call to_pylist() to preserve dtype of the fixed-size array
                zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True)
                array: list = [
                    row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only)
                ]
            else:
                zero_copy_only = _is_zero_copy_only(pa_array.type) and all(
                    not _is_array_with_nulls(chunk) for chunk in pa_array.chunks
                )
                array: list = [
                    row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only)
                ]
        else:
            if isinstance(pa_array.type, _ArrayXDExtensionType):
                # don't call to_pylist() to preserve dtype of the fixed-size array
                zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True)
                array: list = pa_array.to_numpy(zero_copy_only=zero_copy_only)
            else:
                zero_copy_only = _is_zero_copy_only(pa_array.type) and not _is_array_with_nulls(pa_array)
                array: list = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist()

        if len(array) > 0:
            if any(
                (isinstance(x, np.ndarray) and (x.dtype == object or x.shape != array[0].shape))
                or (isinstance(x, float) and np.isnan(x))
                for x in array
            ):
                if np.lib.NumpyVersion(np.__version__) >= "2.0.0b1":
                    return np.asarray(array, dtype=object)
                return np.array(array, copy=False, dtype=object)
        if np.lib.NumpyVersion(np.__version__) >= "2.0.0b1":
            return np.asarray(array)
        else:
            return np.array(array, copy=False)