in src/datasets/formatting/np_formatter.py [0:0]
def _tensorize(self, value):
if isinstance(value, (str, bytes, type(None))):
return value
elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character):
return value
elif isinstance(value, np.number):
return value
default_dtype = {}
if isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.integer):
default_dtype = {"dtype": np.int64}
elif isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.floating):
default_dtype = {"dtype": np.float32}
if config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(value, PIL.Image.Image):
return np.asarray(value, **self.np_array_kwargs)
if config.TORCHVISION_AVAILABLE and "torchvision" in sys.modules:
from torchvision.io import VideoReader
if isinstance(value, VideoReader):
return value # TODO(QL): set output to np arrays ?
if config.TORCHCODEC_AVAILABLE and "torchcodec" in sys.modules:
from torchcodec.decoders import AudioDecoder, VideoDecoder
if isinstance(value, (VideoDecoder, AudioDecoder)):
return value # TODO(QL): set output to np arrays ?
return np.asarray(value, **{**default_dtype, **self.np_array_kwargs})