in dataspeech/gpu_enrichments/squim.py [0:0]
def squim_apply(batch, rank=None, audio_column_name="audio"):
global model
if model is None:
model = SQUIM_OBJECTIVE.get_model()
if rank is not None or torch.cuda.device_count() > 0:
# move the model to the right GPU if not there already
device = f"cuda:{(rank or 0)% torch.cuda.device_count()}"
# move to device and create pipeline here because the pipeline moves to the first GPU it finds anyway
model.to(device)
else:
device = "cpu"
if isinstance(batch[audio_column_name], list):
sdr = []
pesq = []
stoi = []
for sample in batch[audio_column_name]:
waveform = torchaudio.functional.resample(torch.tensor(sample["array"])[None, :].to(device).float(), sample["sampling_rate"], SQUIM_OBJECTIVE.sample_rate)
with torch.no_grad():
waveform = waveform[:, :min(max_audio_length, waveform.shape[1])]
stoi_sample, pesq_sample, sdr_sample = model(waveform)
sdr.append(sdr_sample.cpu()[0])
pesq.append(pesq_sample.cpu()[0])
stoi.append(stoi_sample.cpu()[0])
batch["sdr"] = sdr
batch["pesq"] = pesq
batch["stoi"] = stoi
else:
waveform = torchaudio.functional.resample(torch.tensor(batch[audio_column_name]["array"][None, :]).to(device).float(), batch[audio_column_name]["sampling_rate"], SQUIM_OBJECTIVE.sample_rate)
with torch.no_grad():
stoi_sample, pesq_sample, sdr_sample = model(waveform)
batch["sdr"] = sdr_sample.cpu()[0]
batch["pesq"] = pesq_sample.cpu()[0]
batch["stoi"] = stoi_sample.cpu()[0]
# TODO
return batch