def convert_ldm_vae_checkpoint()

in src/diffusers/loaders/single_file_utils.py [0:0]


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    # remove the LDM_VAE_KEY prefix from the ldm checkpoint keys so that it is easier to map them to diffusers keys
    vae_state_dict = {}
    keys = list(checkpoint.keys())
    vae_key = ""
    for ldm_vae_key in LDM_VAE_KEYS:
        if any(k.startswith(ldm_vae_key) for k in keys):
            vae_key = ldm_vae_key

    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}
    vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["vae"]
    for diffusers_key, ldm_key in vae_diffusers_ldm_map.items():
        if ldm_key not in vae_state_dict:
            continue
        new_checkpoint[diffusers_key] = vae_state_dict[ldm_key]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len(config["down_block_types"])
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"},
        )
        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.get(
                f"encoder.down.{i}.downsample.conv.weight"
            )
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.get(
                f"encoder.down.{i}.downsample.conv.bias"
            )

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len(config["up_block_types"])
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"},
        )
        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )
    conv_attn_to_linear(new_checkpoint)

    return new_checkpoint