training/flax/distil_whisper/modeling_flax_whisper.py [1570:1628]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def decode(
        self,
        decoder_input_ids,
        encoder_outputs,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_position_ids: Optional[jnp.ndarray] = None,
        past_key_values: dict = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
        >>> from datasets import load_dataset

        >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
        >>> input_features = inputs.input_features
        >>> encoder_outputs = model.encode(input_features=input_features)
        >>> decoder_start_token_id = model.config.decoder_start_token_id

        >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

        >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
        >>> last_decoder_hidden_states = outputs.last_hidden_state
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        encoder_hidden_states = encoder_outputs[0]

        batch_size, sequence_length = decoder_input_ids.shape
        if decoder_position_ids is None:
            if past_key_values is not None:
                raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")

            if decoder_attention_mask is not None:
                decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1
            else:
                decoder_position_ids = jnp.broadcast_to(
                    jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
                )

        if decoder_attention_mask is None:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



training/flax/distil_whisper/modeling_flax_whisper.py [1839:1895]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def decode(
        self,
        decoder_input_ids,
        encoder_outputs,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_position_ids: Optional[jnp.ndarray] = None,
        past_key_values: dict = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration
        >>> from datasets import load_dataset

        >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
        >>> input_features = inputs.input_features
        >>> encoder_outputs = model.encode(input_features=input_features)
        >>> decoder_start_token_id = model.config.decoder_start_token_id

        >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

        >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
        >>> last_decoder_hidden_states = outputs.last_hidden_state
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        encoder_hidden_states = encoder_outputs[0]

        batch_size, sequence_length = decoder_input_ids.shape
        if decoder_position_ids is None:
            if past_key_values is not None:
                raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")

            if decoder_attention_mask is not None:
                decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1
            else:
                decoder_position_ids = jnp.broadcast_to(
                    jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
                )
        if decoder_attention_mask is None:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



