def main()

in training/flax/run_speed_pt.py [0:0]


def main():
    # 1. Parse input arguments
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser([DataTrainingArguments])

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0]
    else:
        data_args = parser.parse_args_into_dataclasses()[0]

    # 2. Setup logging
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if data_args.use_pipeline and data_args.batch_size > 1:
        raise ValueError("Make sure that `batch_size` is set to 1 when `use_pipeline=True`.")

    has_wandb = is_wandb_available()
    if has_wandb:
        import wandb
        import wandb as wandb_logger

        # Set up wandb run
        wandb_logger.init(
            project=data_args.wandb_project,
            name=data_args.wandb_name,
            job_type=data_args.wandb_job_type,
            dir=data_args.wandb_dir,
            save_code=data_args.save_code_to_wandb,
        )
        wandb_logger.log({"torch_version": str(torch.__version__)})
        wandb_logger.log({"transformers_version": str(transformers.__version__)})
        wandb_logger.log({"batch_size": data_args.batch_size})

        if data_args.use_pipeline:
            wandb_logger.log({"chunk_length_s": data_args.chunk_length_s})
    else:
        raise ValueError("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.")

    # 3. Load dataset
    raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()

    # Convert lists of dataset names/configs/splits to a dict
    # names: "librispeech_asr+gigaspeech", configs: "all+l", splits: "validation.clean+validation"
    # -> [{"name: "librispeech_asr": "config": "all", "split": "validation.clean"}, {"name: "gigaspeech": "config": "l", "split": "validation"}
    dataset_names_dict = convert_dataset_str_to_list(
        data_args.dataset_name,
        data_args.dataset_config_name,
        splits=data_args.dataset_split_name,
        text_column_names=data_args.text_column_name,
    )

    if len(dataset_names_dict) == 1:
        # load a single eval set
        dataset_dict = dataset_names_dict[0]
        raw_datasets["eval"] = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            cache_dir=data_args.dataset_cache_dir,
            use_auth_token=True,
            streaming=data_args.streaming,
        )
        if dataset_dict["text_column_name"] not in list(raw_datasets["eval"].features.keys()):
            raise ValueError(
                f"--text column name {dataset_dict['text_column_name']} not found in the evaluation "
                f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column "
                f"for the target text. Should be one of {' '.join(list(raw_datasets['eval'].features.keys()))}"
            )
        if dataset_dict["text_column_name"] != "text":
            raw_datasets["eval"] = raw_datasets["eval"].rename_column(dataset_dict["text_column_name"], "text")
    else:
        # load multiple eval sets
        for dataset_dict in tqdm(dataset_names_dict, desc="Loading datasets..."):
            # Clean-up the dataset name for pretty logging
            # ("distil-whisper/librispeech_asr", "validation.clean") -> "librispeech_asr/validation-clean"
            pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
            raw_datasets[pretty_name] = load_dataset(
                dataset_dict["name"],
                dataset_dict["config"],
                split=dataset_dict["split"],
                cache_dir=data_args.dataset_cache_dir,
                use_auth_token=True,
                streaming=data_args.streaming,
            )
            if dataset_dict["text_column_name"] not in list(raw_datasets[pretty_name].features.keys()):
                raise ValueError(
                    f"`--text_column_name` {dataset_dict['text_column_name']} not found in the evaluation "
                    f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column "
                    f"for the target text. Should be one of {' '.join(list(raw_datasets[pretty_name].features.keys()))}"
                )
            if dataset_dict["text_column_name"] != "text":
                raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
                    dataset_dict["text_column_name"], "text"
                )

    # 5. Load pretrained model, tokenizer, and feature extractor
    processor = WhisperProcessor.from_pretrained(data_args.model_name_or_path)

    dtype = torch.float16 if data_args.use_fp16 else torch.float32
    if data_args.use_bf16:
        dtype = torch.bfloat16

    use_flash_attention_2 = data_args.attn_type is not None and "flash2" in data_args.attn_type

    # make sure we're not using a T4
    result = subprocess.run(["nvidia-smi"], capture_output=True, text=True)
    gpu_type = [x for x in result.stdout.split("=") if len(x) > 1][1].split("0")[1].split()

    use_sdpa = False
    if gpu_type[0] == "Tesla" and use_flash_attention_2:
        use_flash_attention_2 = False
        use_sdpa = True

    use_orig_whisper = False
    if data_args.use_orig_whisper:
        use_orig_whisper = True

        model_name = data_args.model_name_or_path.split("/")[-1].split("whisper-")[-1]
        model = whisper.load_model(model_name)
        model.cuda()
    else:
        model = WhisperForConditionalGeneration.from_pretrained(
            data_args.model_name_or_path, torch_dtype=dtype, use_flash_attention_2=use_flash_attention_2
        )
        model.cuda()

    if use_sdpa:
        logger.info("Use SDPA via BetterTransformers...")
        model.to_bettertransformer()

    if data_args.use_torch_compile:
        logger.info("Enabling torch compile for the encoder.")
        # let's compile the encoder forward path
        model.model.encoder.forward = torch.compile(
            model.model.encoder.forward, mode="reduce-overhead", fullgraph=True
        )

        # init torch compile once to create binaries
        input_values = np.random.randn(data_args.batch_size, 16_000)
        input_features = processor(input_values, return_tensors="pt", sampling_rate=16_000).input_features
        input_features = input_features.to(dtype=dtype, device=model.device)

        # run generation three times to that model is compiled
        for _ in range(3):
            _ = model.generate(input_features)

    model_pipeline = None
    if data_args.use_pipeline:
        model_pipeline = pipeline(
            "automatic-speech-recognition",
            model=model,
            tokenizer=processor.tokenizer,
            feature_extractor=processor.feature_extractor,
            torch_dtype=dtype,
            device=model.device,
            chunk_length_s=data_args.chunk_length_s,
        )
        model_pipeline_forward = model_pipeline._forward

    assistant_model = None
    if data_args.assistant_model_name_or_path is not None:
        logger.info("Loading assistant model...")

        if data_args.assistant_model_name_or_path.startswith("openai"):
            assistant_model = WhisperForConditionalGeneration.from_pretrained(
                data_args.assistant_model_name_or_path, torch_dtype=dtype, use_flash_attention_2=use_flash_attention_2
            )
        else:
            assistant_model = WhisperForCausalLM.from_pretrained(
                data_args.assistant_model_name_or_path, torch_dtype=dtype, use_flash_attention_2=use_flash_attention_2
            )

        assistant_model.cuda()

    # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name,
        datasets.features.Audio(sampling_rate=processor.feature_extractor.sampling_rate),
    )

    # 7. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    max_label_length = (
        data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length
    )
    audio_column_name = data_args.audio_column_name
    num_workers = data_args.preprocessing_num_workers
    model_input_name = processor.feature_extractor.model_input_names[0]
    normalizer = EnglishTextNormalizer(processor.tokenizer.english_spelling_normalizer)

    if data_args.max_eval_samples is not None:
        for split in raw_datasets:
            raw_datasets[split] = (
                raw_datasets[split].take(data_args.max_eval_samples)
                if data_args.streaming
                else raw_datasets[split].select(range(data_args.max_eval_samples))
            )

    def prepare_dataset(batch):
        # process audio
        sample = batch[audio_column_name]

        if model_pipeline is None and not use_orig_whisper:
            inputs = processor.feature_extractor(
                sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
            )
            batch[model_input_name] = inputs.get(model_input_name)
        else:
            batch[model_input_name] = sample["array"]

        # process audio length
        batch["length_in_s"] = len(sample["array"]) / sample["sampling_rate"]

        # process targets
        input_str = batch["text"]
        batch["labels"] = processor.tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids
        return batch

    vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()

    for split in raw_datasets:
        raw_datasets_features = list(raw_datasets[split].features.keys())

        map_fn = partial(
            raw_datasets[split].map,
            function=prepare_dataset,
            remove_columns=raw_datasets_features,
        )

        vectorized_datasets[split] = (
            map_fn(num_proc=num_workers, desc="preprocess eval dataset")
            if not data_args.streaming
            else map_fn()  # In streaming, we can't run multiproc - errors out if we try to
        )

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with `args.preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step `args.preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    # 8. Load Metric
    metric = evaluate.load("wer")
    # convention is that we space all punctuation *except* apostrophes
    list(string.punctuation.replace("'", ""))

    def compute_metrics(pred_str, label_str):
        # normalize everything and re-compute the WER
        norm_pred_str = [normalizer(pred) for pred in pred_str]
        norm_label_str = [normalizer(label) for label in label_str]
        # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here
        pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
        label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
        # filtering step to only evaluate the samples that correspond to non-zero normalized references:
        norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
        norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]

        # if any of the two lengths is 0, return 0 WER
        if len(norm_pred_str) == 0 or len(norm_label_str) == 0:
            return 0.0

        wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)

        return wer

    result_datasets = DatasetDict()

    def benchmark(batch):
        if model_pipeline is None and not use_orig_whisper:
            inputs = torch.cat(batch[model_input_name], dim=0).cuda()
            if data_args.use_fp16:
                inputs = inputs.to(torch.float16)
            if data_args.use_bf16:
                inputs = inputs.to(torch.bfloat16)

            inner_batch_size = inputs.shape[0]
        else:
            inner_batch_size = 1

            inputs = batch[model_input_name]

        gen_kwargs = {
            "return_timestamps": data_args.return_timestamps,
            "max_length": data_args.max_gen_length,
        }

        # if not data_args.model_name_or_path.endswith(".en"):
        if not data_args.model_name_or_path.endswith(".en") and not data_args.model_name_or_path.endswith("24-2"):
            gen_kwargs["language"] = "<|en|>"
            gen_kwargs["task"] = "transcribe"
            gen_kwargs["num_beams"] = data_args.num_beams

        # Time forward
        if use_orig_whisper:
            raw_audio = inputs[0].astype(np.float32)
            out_dict = model.transcribe(raw_audio)

            batch["transcription"] = [out_dict["text"]]
            batch["time"] = [out_dict["all_time"]]
        elif model_pipeline is not None:
            # if model is pipeline let's make sure that only forward is timed and not pre- and post-process
            time_result = []

            def _forward_time(*args, **kwargs):
                start_time = time.time()
                result = model_pipeline_forward(*args, **kwargs)
                end_time = time.time() - start_time

                time_result.append(end_time)

                return result

            model_pipeline._forward = _forward_time

            result = model_pipeline(inputs, batch_size=PIPELINE_BATCH_SIZE, generate_kwargs=gen_kwargs)[0]["text"]
            batch["transcription"] = [result]
            batch["time"] = [sum(time_result)]
        elif assistant_model is not None:
            gen_kwargs["assistant_model"] = assistant_model

            start_time = time.time()
            with torch.no_grad():
                encoder_outputs = model.get_encoder()(inputs)

            gen_kwargs["encoder_outputs"] = encoder_outputs

            if data_args.assistant_model_name_or_path.startswith("openai"):
                with torch.no_grad():
                    assistant_encoder_outputs = assistant_model.get_encoder()(inputs)

                gen_kwargs["assistant_encoder_outputs"] = assistant_encoder_outputs
            else:
                gen_kwargs["assistant_encoder_outputs"] = encoder_outputs

            output_ids = model.generate(**gen_kwargs)
            batch["time"] = inner_batch_size * [(time.time() - start_time) / inner_batch_size]

            batch["transcription"] = processor.batch_decode(output_ids, skip_special_tokens=True)
        else:
            start_time = time.time()
            output_ids = model.generate(inputs, **gen_kwargs)
            batch["time"] = inner_batch_size * [(time.time() - start_time) / inner_batch_size]

            batch["transcription"] = processor.batch_decode(output_ids, skip_special_tokens=True)

        batch["length_in_s"] = batch["length_in_s"]
        batch["reference"] = processor.batch_decode(batch["labels"], skip_special_tokens=True)
        batch["num_words"] = [len(r.split()) for r in batch["reference"]]

        return batch

    for split in vectorized_datasets:
        vectorized_datasets_features = [model_input_name]

        map_fn = partial(
            vectorized_datasets[split].map,
            function=benchmark,
            remove_columns=vectorized_datasets_features,
            batch_size=data_args.batch_size,
            batched=True,
        )

        result_datasets[split] = (
            map_fn(num_proc=1, desc="benchmark eval dataset") if not data_args.streaming else map_fn()
        )

    stats_dataset = DatasetDict()

    all_stats = {
        "times_audio_total": 0,
        "times_transcription_total": 0,
        "num_words_total": 0,
        "num_samples": 0,
        "time_per_sample": 0,
        "rtf": 0,
        "words_per_s": 0,
        "wer": 0,
    }

    count = 0
    for split in result_datasets:
        transcriptions = []
        references = []
        stats = {k: 0 for k in all_stats.keys()}

        print(f"Start benchmarking {split}...")
        if data_args.streaming:
            result_iter = iter(result_datasets[split])

        for result in result_iter:
            stats["times_audio_total"] += result["length_in_s"]
            stats["times_transcription_total"] += result["time"]
            stats["num_words_total"] += result["num_words"]
            stats["num_samples"] += 1
            transcriptions.append(result["transcription"])
            references.append(result["reference"])

            count += 1
            print(f"Processed {count} samples...")

            if data_args.samples_per_dataset is not None and stats["num_samples"] == data_args.samples_per_dataset:
                break

        stats["time_per_sample"] = stats["times_transcription_total"] / stats["num_samples"]
        stats["avg_length_sample"] = stats["times_audio_total"] / stats["num_samples"]
        stats["wer"] = compute_metrics(transcriptions, references)
        stats["rtf"] = stats["times_audio_total"] / stats["times_transcription_total"]
        stats["words_per_s"] = stats["num_words_total"] / stats["times_transcription_total"]

        stats_dataset[split] = stats

        log_stats = {f"{split}_{k}": v for k, v in stats.items()}
        wandb_logger.log(log_stats)

        all_stats["times_audio_total"] += stats["times_audio_total"]
        all_stats["times_transcription_total"] += stats["times_transcription_total"]
        all_stats["wer"] += stats["wer"]
        all_stats["num_samples"] += stats["num_samples"]
        all_stats["num_words_total"] += stats["num_words_total"]

    all_stats["time_per_sample"] = all_stats["times_transcription_total"] / all_stats["num_samples"]
    all_stats["avg_length_sample"] = all_stats["times_audio_total"] / all_stats["num_samples"]
    all_stats["wer"] = all_stats["wer"] / len(result_datasets)
    all_stats["rtf"] = all_stats["times_audio_total"] / all_stats["times_transcription_total"]
    all_stats["words_per_s"] = all_stats["num_words_total"] / all_stats["times_transcription_total"]

    stats_dataset["all"] = all_stats

    log_all_stats = {f"all_{k}": v for k, v in all_stats.items()}
    wandb_logger.log(log_all_stats)

    benchmark_artifact = wandb.Artifact("Benchmark", type="datasets")
    with tempfile.TemporaryDirectory() as temp_dir:
        for split in stats_dataset:
            file_name = os.path.join(temp_dir, f"{'_'.join(split.split('/'))}.json")

            with open(file_name, "w") as json_file:
                json.dump(stats_dataset[split], json_file)

            benchmark_artifact.add_file(file_name, split)

        wandb_logger.log_artifact(benchmark_artifact)

    print("Done!")