def _compute()

in metrics/nist_mt/nist_mt.py [0:0]


    def _compute(self, predictions, references, n: int = 5, lowercase=False, western_lang=True):
        tokenizer = NISTTokenizer()

        # Account for single reference cases: references always need to have one more dimension than predictions
        if isinstance(references[0], str):
            references = [[ref] for ref in references]

        predictions = [
            tokenizer.tokenize(pred, return_str=False, lowercase=lowercase, western_lang=western_lang)
            for pred in predictions
        ]
        references = [
            [
                tokenizer.tokenize(ref, return_str=False, lowercase=lowercase, western_lang=western_lang)
                for ref in ref_sentences
            ]
            for ref_sentences in references
        ]
        return {"nist_mt": corpus_nist(list_of_references=references, hypotheses=predictions, n=n)}