def _output_descriptions()

in src/exporters/coreml/config.py [0:0]


    def _output_descriptions(self) -> "OrderedDict[str, OutputDescription]":
        if self.task == "feature-extraction" or self.seq2seq == "encoder":
            return OrderedDict(
                [
                    (
                        "last_hidden_state",
                        OutputDescription(
                            "last_hidden_state",
                            "Sequence of hidden-states at the output of the last layer of the model",
                        )
                    ),
                ]
            )

        if self.task in [
            "image-classification",
            "multiple-choice",
            "next-sentence-prediction",
            "text-classification",
        ]:
            return OrderedDict(
                [
                    (
                        "logits",
                        OutputDescription(
                            "probabilities",
                            "Probability of each category",
                            do_softmax=True,
                        )
                    ),
                    (
                        "class_labels",
                        OutputDescription(
                            "classLabel",
                            "Category with the highest score",
                        )
                    ),
                ]
            )

        if self.task in [
            "masked-im",
            "text-generation",
            "text2text-generation",
        ]:
            return OrderedDict(
                [
                    (
                        "logits",
                        OutputDescription(
                            "logits",
                            "Classification scores (before softmax)",
                            do_softmax=False,
                        )
                    ),
                ]
            )

        if self.task in [
            "automatic-speech-recognition",
            "fill-mask",
            "speech-seq2seq",
            "token-classification"
        ]:
            return OrderedDict(
                [
                    (
                        "logits",
                        OutputDescription(
                            "token_scores",
                            "Classification scores for each vocabulary token (after softmax)",
                            do_softmax=True,
                        )
                    ),
                ]
            )

        if self.task == "object-detection":
            return OrderedDict(
                [
                    (
                        "logits",
                        OutputDescription(
                            "logits",
                            "Classification logits (including no-object) for all queries",
                            do_softmax=False,
                        )
                    ),
                    (
                        "pred_boxes",
                        OutputDescription(
                            "pred_boxes",
                            "Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height)",
                        )
                    ),
                ]
            )

        if self.task == "question-answering":
            return OrderedDict(
                [
                    (
                        "start_logits",
                        OutputDescription(
                            "start_scores",
                            "Span-start scores (after softmax)",
                            do_softmax=True,
                        )
                    ),
                    (
                        "end_logits",
                        OutputDescription(
                            "end_scores",
                            "Span-end scores (after softmax)",
                            do_softmax=True,
                        )
                    ),
                ]
            )

        if self.task == "semantic-segmentation":
            return OrderedDict(
                [
                    (
                        "logits",
                        OutputDescription(
                            "classLabels",
                            "Classification scores for each pixel",
                            do_softmax=False,
                            do_upsample=True,
                            do_argmax=True,
                        )
                    ),
                ]
            )

        raise AssertionError(f"Unsupported task '{self.task}' for modality '{self.modality}'")