def load_latest_adapter()

in ml/trainer.py [0:0]


def load_latest_adapter(model, model_name: str, language: str) -> tuple[PeftModel, str]:
    """
    Load the most recent adapter for given model and language.
    Returns: (loaded_model, timestamp of loaded adapter)
    """
    adapter_base = get_adapter_path(model_name, language)

    if not adapter_base.exists():
        return None, None

    # Get all version directories and sort by timestamp
    versions = sorted(
        [d for d in adapter_base.glob("version_*")],
        key=lambda x: x.name,
        reverse=True
    )

    if not versions:
        return None, None

    latest_version = versions[0]
    timestamp = latest_version.name.replace("version_", "")

    model = PeftModel.from_pretrained(model, latest_version, is_trainable=True)
    return model, timestamp