in ml/eval/reward_eval.py [0:0]
def process_evaluation(args, model_name: str, eval_data_list_dict) -> List[Dict[str, Any]]:
"""
Main function for processing evaluation, takes model name as input.
"""
# mixed_precision = 'bf16' if args.bfloat16 else 'fp16'
# Initialize accelerator and model
# accelerator = MyAccelerator(mixed_precision)
model = create_model(model_name)
tokenizer = create_tokenizer(model_name)
model.eval()
eval_data = evaluate_data(args, model, tokenizer, eval_data_list_dict)
result_filename = args.result_filename or f"{os.path.basename(args.output_filepath).split('.')[0]}_reward_results.json"
with open(result_filename, "w") as f:
json.dump(eval_data, f)
return eval_data