in utils/pipeline_utils.py [0:0]
def use_compile(pipeline):
# Compile the compute-intensive portions of the model: denoising transformer / decoder
pipeline.transformer = torch.compile(
pipeline.transformer, mode="max-autotune", fullgraph=True
)
pipeline.vae.decode = torch.compile(
pipeline.vae.decode, mode="max-autotune", fullgraph=True
)
# warmup for a few iterations (`num_inference_steps` shouldn't matter)
for _ in range(3):
pipeline(
"dummy prompt to trigger torch compilation",
output_type="pil",
num_inference_steps=4,
).images[0]
return pipeline