example.py (16 lines of code) (raw):

import imageio import gymnasium as gym import numpy as np import gym_aloha env = gym.make("gym_aloha/AlohaInsertion-v0") observation, info = env.reset() frames = [] for _ in range(1000): action = env.action_space.sample() observation, reward, terminated, truncated, info = env.step(action) image = env.render() frames.append(image) if terminated or truncated: observation, info = env.reset() env.close() imageio.mimsave("example.mp4", np.stack(frames), fps=25)