gym_genesis/tasks/cube_stack.py (189 lines of code) (raw):
import genesis as gs
import numpy as np
from gymnasium import spaces
import random
import torch
joints_name = (
"joint1",
"joint2",
"joint3",
"joint4",
"joint5",
"joint6",
"joint7",
"finger_joint1",
"finger_joint2",
)
AGENT_DIM = len(joints_name)
ENV_DIM = 14
color_dict = {
"red": (1.0, 0.0, 0.0, 1.0),
"green": (0.0, 1.0, 0.0, 1.0),
"blue": (0.0, 0.5, 1.0, 1.0),
"yellow": (1.0, 1.0, 0.0, 1.0),
}
class CubeStack:
def __init__(self, enable_pixels, observation_height, observation_width, num_envs, env_spacing, camera_capture_mode, strip_environment_state):
self.enable_pixels = enable_pixels
self.observation_height = observation_height
self.observation_width = observation_width
self.num_envs = num_envs
self._random = np.random.RandomState()
self._build_scene(num_envs, env_spacing)
self.observation_space = self._make_obs_space()
self.action_space = spaces.Box(low=-1.0, high=1.0, shape=(AGENT_DIM,), dtype=np.float32)
self.camera_capture_mode = camera_capture_mode
self.strip_environment_state = strip_environment_state
def _build_scene(self, num_envs, env_spacing):
if not gs._initialized:
gs.init(backend=gs.gpu, precision="32")
self.scene = gs.Scene(
sim_options=gs.options.SimOptions(dt=0.01),
rigid_options=gs.options.RigidOptions(box_box_detection=True),
show_viewer=False,
)
self.plane = self.scene.add_entity(gs.morphs.Plane())
# === Main task cubes ===
self.cube_1 = self.scene.add_entity(
gs.morphs.Box(
size=(0.04, 0.04, 0.04),
pos=(0.6, -0.1, 0.02),
),
surface=gs.surfaces.Plastic(color=(1, 0, 0)),
)
self.cube_2 = self.scene.add_entity(
gs.morphs.Box(
size=(0.04, 0.04, 0.04),
pos=(0.45, 0.15, 0.02),
),
surface=gs.surfaces.Plastic(color=(0, 1, 0)),
)
# === Distractor cubes ===
self.distractor_cubes = []
for _ in range(3): # add 3 distractors (shared across batched envs)
xy = np.random.uniform(low=[0.3, -0.3], high=[0.7, 0.3])
cube = self.scene.add_entity(
gs.morphs.Box(
size=(0.04, 0.04, 0.04),
pos=(xy[0], xy[1], 0.02), # dummy, randomized in reset()
),
surface=gs.surfaces.Plastic(color=(0.5, 0.5, 0.5)), # gray
)
self.distractor_cubes.append(cube)
# === Franka arm ===
self.franka = self.scene.add_entity(
gs.morphs.MJCF(file="xml/franka_emika_panda/panda.xml"),
vis_mode="collision",
)
if self.enable_pixels:
self.cam = self.scene.add_camera(
res=(self.observation_width, self.observation_height),
pos=(3.5, 0.0, 2.5),
lookat=(0, 0, 0.5),
fov=30,
GUI=False
)
self.scene.build(n_envs=num_envs, env_spacing=env_spacing)
self.motors_dof = np.arange(7)
self.fingers_dof = np.arange(7, 9)
self.eef = self.franka.get_link("hand")
def _make_obs_space(self):
#TODO: see if we should add text obs
if self.enable_pixels:
# we explicity remove the need of environment_state
return spaces.Dict({
"agent_pos": spaces.Box(low=-np.inf, high=np.inf, shape=(AGENT_DIM,), dtype=np.float32),
"pixels": spaces.Box(low=0, high=255, shape=(self.observation_height, self.observation_width, 3), dtype=np.uint8),
})
else:
return spaces.Dict({
"agent_pos": spaces.Box(low=-np.inf, high=np.inf, shape=(AGENT_DIM,), dtype=np.float32),
"environment_state": spaces.Box(low=-np.inf, high=np.inf, shape=(ENV_DIM,), dtype=np.float32),
})
def reset(self):
B = self.num_envs
z = 0.02
quat = torch.tensor([0, 0, 0, 1], dtype=torch.float32, device=gs.device).repeat(B, 1)
# === Reset cube_1 (to be picked) ===
x1 = self._random.uniform(0.45, 0.75, size=(B,))
y1 = self._random.uniform(-0.2, 0.2, size=(B,))
pos1 = torch.tensor(np.stack([x1, y1, np.full(B, z)], axis=1), dtype=torch.float32, device=gs.device)
self.cube_1.set_pos(pos1)
self.cube_1.set_quat(quat)
# === Reset cube_2 (target) ===
x2 = self._random.uniform(0.3, 0.7, size=(B,))
y2 = self._random.uniform(-0.3, 0.3, size=(B,))
pos2 = torch.tensor(np.stack([x2, y2, np.full(B, z)], axis=1), dtype=torch.float32, device=gs.device)
self.cube_2.set_pos(pos2)
self.cube_2.set_quat(quat)
# === Distractor cubes ===
if hasattr(self, "distractor_cubes"):
for cube in self.distractor_cubes:
xd = self._random.uniform(0.3, 0.7, size=(B,))
yd = self._random.uniform(-0.3, 0.3, size=(B,))
pos_d = torch.tensor(np.stack([xd, yd, np.full(B, z)], axis=1), dtype=torch.float32, device=gs.device)
cube.set_pos(pos_d)
cube.set_quat(quat)
# === Reset robot to home pose ===
qpos = np.array([0.0, -0.4, 0.0, -2.2, 0.0, 2.0, 0.8, 0.04, 0.04])
qpos_tensor = torch.tensor(qpos, dtype=torch.float32, device=gs.device).repeat(B, 1)
self.franka.set_qpos(qpos_tensor, zero_velocity=True)
self.franka.control_dofs_position(qpos_tensor[:, :7], self.motors_dof)
self.franka.control_dofs_position(qpos_tensor[:, 7:], self.fingers_dof)
# === Optional control stability tweaks ===
self.franka.set_dofs_kp(np.array([4500, 4500, 3500, 3500, 2000, 2000, 2000, 100, 100]))
self.franka.set_dofs_kv(np.array([450, 450, 350, 350, 200, 200, 200, 10, 10]))
self.franka.set_dofs_force_range(
np.array([-87] * 7 + [-100, -100]),
np.array([87] * 7 + [100, 100]),
)
self.scene.step()
if self.enable_pixels:
self.cam.start_recording()
return self.get_obs()
def seed(self, seed):
np.random.seed(seed)
random.seed(seed)
self._random = np.random.RandomState(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
self.action_space.seed(seed)
def step(self, action):
self.franka.control_dofs_position(action[:, :7], self.motors_dof)
self.franka.control_dofs_position(action[:, 7:], self.fingers_dof)
self.scene.step()
reward = self.compute_reward()
obs = self.get_obs()
return None, reward, None, obs
def compute_reward(self):
pos_1 = self.cube_1.get_pos() # (B, 3)
pos_2 = self.cube_2.get_pos() # (B, 3)
xy_dist = torch.norm(pos_1[:, :2] - pos_2[:, :2], dim=1) # (B,)
z_diff = pos_1[:, 2] - pos_2[:, 2] # (B,)
reward = ((xy_dist < 0.05) & (z_diff > 0.03)).float() # (B,)
return reward.cpu().numpy()
def get_obs(self):
eef_pos = self.eef.get_pos() # (B, 3)
eef_rot = self.eef.get_quat() # (B, 4)
gripper = self.franka.get_dofs_position()[:, 7:9] # (B, 2)
cube1_pos = self.cube_1.get_pos() # (B, 3)
cube1_rot = self.cube_1.get_quat() # (B, 4)
cube2_pos = self.cube_2.get_pos() # (B, 3)
diff = eef_pos - cube1_pos # (B, 3)
dist = torch.norm(diff, dim=1, keepdim=True) # (B, 1) (privileged)
agent_pos = torch.cat([eef_pos, eef_rot, gripper], dim=1).float() # (B, 9)
environment_state = torch.cat([cube1_pos, cube1_rot, diff, dist, cube2_pos], dim=1).float() # (B, 14)
obs = {
"agent_pos": agent_pos,
"environment_state": environment_state,
}
if self.enable_pixels:
#TODO (jadechoghari): it's hacky but keep it for the sake of saving time
if self.strip_environment_state is True:
del obs["environment_state"]
if self.camera_capture_mode == "per_env":
# Capture a separate image for each environment
batch_imgs = []
for i in range(self.num_envs):
pos_i = self.scene.envs_offset[i] + np.array([3.5, 0.0, 2.5])
lookat_i = self.scene.envs_offset[i] + np.array([0, 0, 0.5])
self.cam.set_pose(pos=pos_i, lookat=lookat_i)
img = self.cam.render()[0]
batch_imgs.append(img)
pixels = np.stack(batch_imgs, axis=0) # shape: (B, H, W, 3)
assert pixels.ndim == 4, f"pixels shape {pixels.shape} is not 4D (B, H, W, 3)"
elif self.camera_capture_mode == "global":
# Capture a single global/overview image
pixels = self.cam.render()[0] # shape: (H, W, 3)
assert pixels.ndim == 3, f"pixels shape {pixels.shape} is not 3D (H, W, 3)"
else:
raise ValueError(f"Unknown camera_capture_mode: {self.camera_capture_mode}")
obs["pixels"] = pixels
return obs