gym_hil/envs/panda_arrange_boxes_gym_env.py [119:134]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        obs = self._compute_observation()

        return obs, {}

    def step(self, action: np.ndarray) -> Tuple[Dict[str, np.ndarray], float, bool, bool, Dict[str, Any]]:
        """Take a step in the environment."""
        # Apply the action to the robot
        self.apply_action(action)

        # Compute observation, reward and termination
        obs = self._compute_observation()
        rew = self._compute_reward()
        success = self._is_success()

        if self.reward_type == "sparse":
            success = rew == 1.0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



gym_hil/envs/panda_pick_gym_env.py [124:138]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        obs = self._compute_observation()
        return obs, {}

    def step(self, action: np.ndarray) -> Tuple[Dict[str, np.ndarray], float, bool, bool, Dict[str, Any]]:
        """Take a step in the environment."""
        # Apply the action to the robot
        self.apply_action(action)

        # Compute observation, reward and termination
        obs = self._compute_observation()
        rew = self._compute_reward()
        success = self._is_success()

        if self.reward_type == "sparse":
            success = rew == 1.0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



