gym_xarm/tasks/peg_in_box.py (3 lines of code) (raw):
# import numpy as np
from gym_xarm.tasks import Base
class PegInBox(Base):
"""DEPRECATED: use only Lift for now"""
...
# def __init__(self):
# super().__init__("peg_in_box")
# def _reset_sim(self):
# self._act_magnitude = 0
# super()._reset_sim()
# for _ in range(10):
# self._apply_action(np.array([0, 0, 0, 1], dtype=np.float32))
# self.sim.step()
# @property
# def box(self):
# return self.sim.data.get_site_xpos("box_site")
# def is_success(self):
# return np.linalg.norm(self.obj - self.box) <= 0.05
# def get_reward(self):
# dist_xy = np.linalg.norm(self.obj[:2] - self.box[:2])
# dist_xyz = np.linalg.norm(self.obj - self.box)
# return float(dist_xy <= 0.045) * (2 - 6 * dist_xyz) - 0.2 * np.square(self._act_magnitude) - dist_xy
# def _get_obs(self):
# eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
# gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
# eef, box = self.eef - self.center_of_table, self.box - self.center_of_table
# obj = self.obj - self.center_of_table
# obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
# obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
# obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
# obs = np.concatenate(
# [
# eef,
# eef_velp,
# box,
# obj,
# obj_rot,
# obj_velp,
# obj_velr,
# eef - box,
# eef - obj,
# obj - box,
# np.array(
# [
# np.linalg.norm(eef - box),
# np.linalg.norm(eef - obj),
# np.linalg.norm(obj - box),
# gripper_angle,
# ]
# ),
# ],
# axis=0,
# )
# return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": box}
# def _sample_goal(self):
# # Gripper
# gripper_pos = np.array([1.280, 0.295, 0.9]) + self.np_random.uniform(-0.05, 0.05, size=3)
# super()._set_gripper(gripper_pos, self.gripper_rotation)
# # Object
# object_pos = gripper_pos - np.array([0, 0, 0.06]) + self.np_random.uniform(-0.005, 0.005, size=3)
# object_qpos = self.sim.data.get_joint_qpos("object_joint0")
# object_qpos[:3] = object_pos
# self.sim.data.set_joint_qpos("object_joint0", object_qpos)
# # Box
# box_pos = np.array([1.61, 0.18, 0.58])
# box_pos[:2] += self.np_random.uniform(-0.11, 0.11, size=2)
# box_qpos = self.sim.data.get_joint_qpos("box_joint0")
# box_qpos[:3] = box_pos
# self.sim.data.set_joint_qpos("box_joint0", box_qpos)
# return self.box
# def step(self, action):
# self._act_magnitude = np.linalg.norm(action[:3])
# return super().step(action)