gym_xarm/tasks/push.py (3 lines of code) (raw):
# import numpy as np
from gym_xarm.tasks import Base
class Push(Base):
"""DEPRECATED: use only Lift for now"""
...
# def __init__(self):
# super().__init__("push")
# def _reset_sim(self):
# self._act_magnitude = 0
# super()._reset_sim()
# def is_success(self):
# return np.linalg.norm(self.obj - self.goal) <= 0.05
# def get_reward(self):
# dist = np.linalg.norm(self.obj - self.goal)
# penalty = self._act_magnitude**2
# return -(dist + 0.15 * penalty)
# def _get_obs(self):
# eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
# gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
# eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
# obj = self.obj - self.center_of_table
# obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
# obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
# obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
# obs = np.concatenate(
# [
# eef,
# eef_velp,
# goal,
# obj,
# obj_rot,
# obj_velp,
# obj_velr,
# eef - goal,
# eef - obj,
# obj - goal,
# np.array(
# [
# np.linalg.norm(eef - goal),
# np.linalg.norm(eef - obj),
# np.linalg.norm(obj - goal),
# gripper_angle,
# ]
# ),
# ],
# axis=0,
# )
# return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
# def _sample_goal(self):
# # Gripper
# gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
# super()._set_gripper(gripper_pos, self.gripper_rotation)
# # Object
# object_pos = self.center_of_table - np.array([0.25, 0, 0.07])
# object_pos[0] += self.np_random.uniform(-0.08, 0.08, size=1)
# object_pos[1] += self.np_random.uniform(-0.08, 0.08, size=1)
# object_qpos = self.sim.data.get_joint_qpos("object_joint0")
# object_qpos[:3] = object_pos
# self.sim.data.set_joint_qpos("object_joint0", object_qpos)
# # Goal
# self.goal = np.array([1.600, 0.200, 0.545])
# self.goal[:2] += self.np_random.uniform(-0.1, 0.1, size=2)
# self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
# return self.goal
# def step(self, action):
# self._act_magnitude = np.linalg.norm(action[:3])
# return super().step(action)