pkgs/python-modules/causal-conv1d/default.nix (65 lines of code) (raw):

{ lib, stdenv, fetchFromGitHub, buildPythonPackage, autoAddDriverRunpath, cmake, git, ninja, packaging, psutil, which, cudaPackages, torch, }: buildPythonPackage rec { pname = "causal-conv1d"; version = "1.4.0"; src = fetchFromGitHub { owner = "Dao-AILab"; repo = pname; rev = "v${version}"; fetchSubmodules = true; hash = "sha256-p5x5u3zEmEMN3mWd88o3jmcpKUnovTvn7I9jIOj/ie0="; }; stdenv = cudaPackages.backendStdenv; buildInputs = with cudaPackages; [ cuda_cccl cuda_cudart libcublas libcusolver libcusparse psutil ]; nativeBuildInputs = [ autoAddDriverRunpath cmake ninja which ]; dependencies = [ torch packaging ]; env = { CUDA_HOME = lib.getDev cudaPackages.cuda_nvcc; TORCH_CUDA_ARCH_LIST = lib.concatStringsSep ";" torch.cudaCapabilities; CAUSAL_CONV1D_FORCE_BUILD = "TRUE"; }; propagatedBuildInputs = [ torch ]; # cmake/ninja are used for parallel builds, but we don't want the # cmake configure hook to kick in. dontUseCmakeConfigure = true; # We don't have any tests in this package (yet). doCheck = false; preBuild = '' export MAX_JOBS=$NIX_BUILD_CORES ''; pythonImportsCheck = [ "causal_conv1d" ]; meta = with lib; { description = "Causal 1D convolution"; license = licenses.asl20; platforms = platforms.linux; }; }