in scripts/ft_gemma3n_image_trl.py [0:0]
def main():
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
################
# Model, Tokenizer & Processor
################
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
processor.tokenizer.padding_side = "right"
# Use appropriate model class based on model name
if "gemma-3n" in model_args.model_name_or_path.lower():
model = Gemma3nForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
else:
model = AutoModelForImageTextToText.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
def collate_fn(examples):
texts = []
images_list = []
for example in examples:
# Apply chat template to get text
text = processor.apply_chat_template(
example["messages"], tokenize=False, add_generation_prompt=False
).strip()
texts.append(text)
# Extract images
if "images" in example: # single-image case
images = [img.convert("RGB") for img in example["images"]]
else: # multi-image case or intersection dataset
images = process_vision_info(example["messages"])
images_list.append(images)
# Tokenize the texts and process the images
batch = processor(
text=texts, images=images_list, return_tensors="pt", padding=True
)
# The labels are the input_ids, and we mask the padding tokens in the loss computation
labels = batch["input_ids"].clone()
# Mask tokens for Gemma3n model
if "gemma-3n" in model_args.model_name_or_path.lower():
# Use Gemma3n specific token masking
labels[labels == processor.tokenizer.pad_token_id] = -100
if hasattr(processor.tokenizer, "image_token_id"):
labels[labels == processor.tokenizer.image_token_id] = -100
if hasattr(processor.tokenizer, "boi_token_id"):
labels[labels == processor.tokenizer.boi_token_id] = -100
if hasattr(processor.tokenizer, "eoi_token_id"):
labels[labels == processor.tokenizer.eoi_token_id] = -100
else:
# Original masking for other models
image_token_id = [
processor.tokenizer.convert_tokens_to_ids(
processor.tokenizer.special_tokens_map["boi_token"]
)
]
labels[labels == processor.tokenizer.pad_token_id] = -100
labels[labels == image_token_id] = -100
labels[labels == 262144] = -100
batch["labels"] = labels
return batch
################
# Dataset
################
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
# Handle different dataset formats
if script_args.dataset_name == "FanqingM/MMIU-Benchmark":
dataset = prepare_dataset(
dataset, script_args.dataset_name, script_args.dataset_train_split
)
elif script_args.dataset_name == "ariG23498/intersection-dataset":
# Format intersection dataset
dataset = dataset.map(
format_intersection_data, batched=True, batch_size=4, num_proc=4
)
################
# Training
################
trainer = SFTTrainer(
model=model,
args=training_args,
data_collator=collate_fn,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split]
if training_args.eval_strategy != "no"
else None,
processing_class=processor.tokenizer,
peft_config=my_get_peft_config(model_args),
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
if trainer.accelerator.is_main_process:
processor.push_to_hub(training_args.hub_model_id)