src/huggingface_inference_toolkit/optimum_utils.py (81 lines of code) (raw):

import importlib.util import os from huggingface_inference_toolkit.logging import logger _optimum_neuron = False if importlib.util.find_spec("optimum") is not None: if importlib.util.find_spec("optimum.neuron") is not None: _optimum_neuron = True def is_optimum_neuron_available(): return _optimum_neuron def get_input_shapes(model_dir): """Method to get input shapes from model config file. If config file is not present, default values are returned.""" from transformers import AutoConfig input_shapes = {} input_shapes_available = False # try to get input shapes from config file try: config = AutoConfig.from_pretrained(model_dir) if hasattr(config, "neuron"): # check if static batch size and sequence length are available if config.neuron.get("static_batch_size", None) and config.neuron.get( "static_sequence_length", None ): input_shapes["batch_size"] = config.neuron["static_batch_size"] input_shapes["sequence_length"] = config.neuron[ "static_sequence_length" ] input_shapes_available = True logger.info( f"Input shapes found in config file. Using input shapes from config with batch size {input_shapes['batch_size']} and sequence length {input_shapes['sequence_length']}" ) else: # Add warning if environment variables are set but will be ignored if os.environ.get("HF_OPTIMUM_BATCH_SIZE", None) is not None: logger.warning( "HF_OPTIMUM_BATCH_SIZE environment variable is set. Environment variable will be ignored and input shapes from config file will be used." ) if os.environ.get("HF_OPTIMUM_SEQUENCE_LENGTH", None) is not None: logger.warning( "HF_OPTIMUM_SEQUENCE_LENGTH environment variable is set. Environment variable will be ignored and input shapes from config file will be used." ) except Exception: input_shapes_available = False # return input shapes if available if input_shapes_available: return input_shapes # extract input shapes from environment variables sequence_length = os.environ.get("HF_OPTIMUM_SEQUENCE_LENGTH", None) if sequence_length is None: raise ValueError( "HF_OPTIMUM_SEQUENCE_LENGTH environment variable is not set. Please set HF_OPTIMUM_SEQUENCE_LENGTH to a positive integer." ) if not int(sequence_length) > 0: raise ValueError( f"HF_OPTIMUM_SEQUENCE_LENGTH must be set to a positive integer. Current value is {sequence_length}" ) batch_size = os.environ.get("HF_OPTIMUM_BATCH_SIZE", 1) logger.info( f"Using input shapes from environment variables with batch size {batch_size} and sequence length {sequence_length}" ) return {"batch_size": int(batch_size), "sequence_length": int(sequence_length)} def get_optimum_neuron_pipeline(task, model_dir): """Method to get optimum neuron pipeline for a given task. Method checks if task is supported by optimum neuron and if required environment variables are set, in case model is not converted. If all checks pass, optimum neuron pipeline is returned. If checks fail, an error is raised.""" logger.info("Getting optimum neuron pipeline.") from optimum.neuron.pipelines.transformers.base import ( NEURONX_SUPPORTED_TASKS, pipeline, ) from optimum.neuron.utils import NEURON_FILE_NAME # convert from os.path or path if not isinstance(model_dir, str): model_dir = str(model_dir) # check if task is sentence-embeddings and convert to feature-extraction, as sentence-embeddings is supported in feature-extraction pipeline if task == "sentence-embeddings": task = "feature-extraction" # check task support if task not in NEURONX_SUPPORTED_TASKS: raise ValueError( f"Task {task} is not supported by optimum neuron and inf2. Supported tasks are: {list(NEURONX_SUPPORTED_TASKS.keys())}" ) # check if model is already converted and has input shapes available export = True if NEURON_FILE_NAME in os.listdir(model_dir): export = False if export: logger.info( "Model is not converted. Checking if required environment variables are set and converting model." ) # get static input shapes to run inference input_shapes = get_input_shapes(model_dir) # set NEURON_RT_NUM_CORES to 1 to avoid conflicts with multiple HTTP workers # TODO: Talk to optimum team what are the best options for encoder models to run on 2 neuron cores # os.environ["NEURON_RT_NUM_CORES"] = "1" # get optimum neuron pipeline neuron_pipe = pipeline( task, model=model_dir, export=export, input_shapes=input_shapes ) return neuron_pipe