local_inference/4bit_bnb.ipynb (125 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Llama-3.1-8B-Instruct in 4-bit bitsandbytes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's first install the required libraries:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install transformers[torch] bitsandbytes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We import the required libraries : "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's load the model. To quantize the model on the fly, we pass a `quantization_config`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_name = \"meta-llama/Meta-Llama-3.1-8B-Instruct\"\n",
"quantization_config = BitsAndBytesConfig(load_in_4bit=True,\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_quant_type= \"nf4\"\n",
" )\n",
"\n",
"quantized_model = AutoModelForCausalLM.from_pretrained(\n",
"\tmodel_name, device_map=\"auto\", torch_dtype=torch.bfloat16, quantization_config=quantization_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, we need to prepare the inputs: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"input_text = \"What are we having for dinner?\"\n",
"input_ids = tokenizer(input_text, return_tensors=\"pt\").to(\"cuda\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can generate the output ! "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = quantized_model.generate(**input_ids, max_new_tokens=10)\n",
"\n",
"print(tokenizer.decode(output[0], skip_special_tokens=True))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}